Advertisement

Cell Biochemistry and Biophysics

, Volume 68, Issue 3, pp 463–473 | Cite as

Molecular Insight in Gastric Cancer Induction: An Overview of Cancer Stemness Genes

  • Haleh Akhavan-Niaki
  • Ali Akbar Samadani
Review Paper

Abstract

Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.

Keywords

Gastric cancer DNA methylation Oncogenes Stemness genes 

References

  1. 1.
    Vaccaro, B. J., Gonzalez, S., Poneros, J. M., Stevens, P. D., Capiak, K. M., Lightdale, C. J., et al. (2011). Detection of intestinal metaplasia after successful eradication of Barrett’s Esophagus with radiofrequency ablation. Digestive Diseases and Sciences, 56(7), 1996–2000.Google Scholar
  2. 2.
    Cunningham, S. C., Kamangar, F., Kim, M. P., Hammoud, S., Haque, R., Iacobuzio-Donahue, C. A., et al. (2006). Claudin-4, mitogen-activated protein kinase kinase 4, and stratifin are markers of gastric adenocarcinoma precursor lesions. Cancer Epidemiology Biomarkers and Prevention, 15, 281–287.CrossRefGoogle Scholar
  3. 3.
    Yoshikawa, A., Inada, K. I., Yamachika, T., Shimizu, N., Kaminishi, M., & Tatematsu, M. (1998). Phenotypic shift in human differentiated gastric cancers from gastric to intestinal epithelial cell type during disease progression. Gastric Cancer, 1, 134–141.PubMedCrossRefGoogle Scholar
  4. 4.
    Almeida, R., Silva, E., Santos-Silva, F., Silberg, D. G., Wang, J., De Bolos, C., et al. (2003). Expression of intestine-specific transcription factor, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. The Journal of Pathology, 199, 36–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsukamoto, T., Mizoshita, T., Mihara, M., Tanaka, H., Takenaka, Y., Yamamura, Y., et al. (2005). Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology, 46, 649–658.PubMedCrossRefGoogle Scholar
  6. 6.
    Meireles, S. I., Cristo, E. B., Carvalho, A. F., Hirata, R, Jr, Pelosof, A., Gomes, L. I., et al. (2004). Molecular classifiers for gastric cancer and nonmalignant diseases of the gastric mucosa. Cancer Research, 64, 1255–1265.PubMedCrossRefGoogle Scholar
  7. 7.
    Crawford, J. (1994). The gastrointestinal tract. In S. L. C. R. Robbins, V. Kumar, & F. J. Schoen (Eds.), Pathologic basis of disease (pp. 755–783). Philadelphia: WB Saunders Co.Google Scholar
  8. 8.
    Schwartz, G. (1996). Invasion and metastasis in gastric cancer: In vitro and in vivo models with clinical considerations. Seminars in Oncology, 23, 316–324.PubMedGoogle Scholar
  9. 9.
    Green, D., Ponce de Leon, S., Leon-Rodriguez, E., et al. (2002). Adenocarcinoma of the stomach: univariate and multivariate analysis of factors associated with survival. American Journal of Oncology, 25, 84–89.CrossRefGoogle Scholar
  10. 10.
    Gore, R. (1997). Gastrointestinal cancer. Radiologic Clinics of North America, 35, 295–310.PubMedGoogle Scholar
  11. 11.
    Karpeh, M., & Brennan, M. (1998). Gastric carcinoma. Annals of Surgical Oncology, 5, 650–656.PubMedCrossRefGoogle Scholar
  12. 12.
    Hundahl, S. A., Phillips, J. L., & Menck, H. R. (2000). The National Cancer Data Base Report on poor survival of US gastric carcinoma patients treated with gastrectomy: Fifth edition American Joint Committee on Cancer staging, proximal disease, and the ‘different disease’ hypothesis. Cancer, 88, 921–932.PubMedCrossRefGoogle Scholar
  13. 13.
    Milne, A. N., Carneiro, F., O’Morain, C., & Offerhaus, G. J. (2009). Nature meets nurture: Molecular genetics of gastric cancer. Human Genetics, 126, 615–628.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sugimoto, M., Furuta, T., Shirai, N., Nakamura, A., Kajimura, M., et al. (2007). Effects of interleukin-10 gene polymorphism on the development of gastric cancer and peptic ulcer in Japanese subjects. Journal of Gastroenterology and Hepatology, 22, 1443–1449.PubMedCrossRefGoogle Scholar
  15. 15.
    Moy, K. A., Fan, Y., Wang, R., Gao, Y. T., Yu, M. C., et al. (2010). Alcohol and tobacco use in relation to gastric cancer: A prospective study of men in Shanghai, China. Cancer Epidemiology Biomarkers and Prevention, 19, 2287–2297.CrossRefGoogle Scholar
  16. 16.
    Griffiths, E. A., Pritchard, S. A., Valentine, H. R., Whitchelo, N., Bishop, P. W., Ebert, M. P., et al. (2007). Hypoxia-inducible factor-1alpha expression in the gastric carcinogenesis sequence and its prognostic role in gastric and gastro-oesophageal adenocarcinomas. British Journal of Cancer, 96, 95–103.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gendron, F. P., Mongrain, S., Laprise, P., McMahon, S., Dubois, C. M., Blais, M., et al. (2006). The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290, G310–G318.PubMedCrossRefGoogle Scholar
  18. 18.
    Guo, R. J., Suh, E. R., & Lynch, J. P. (2004). The role of Cdx proteins in intestinal development and cancer. Cancer Biology & Therapy, 3, 593–601.CrossRefGoogle Scholar
  19. 19.
    Silberg, D. G., Sullivan, J., Kang, E., Swain, G. P., Moffett, J., Sund, N. J., et al. (2002). Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology, 122, 689–696.PubMedCrossRefGoogle Scholar
  20. 20.
    Mesquita, P., Jonckheere, N., Almeida, R., Ducourouble, M. P., Serpa, J., Silva, E., et al. (2003). Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. Journal of Biological Chemistry, 278, 51549–51556.PubMedCrossRefGoogle Scholar
  21. 21.
    Tamura, G. (2006). Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World Journal of Gastroenterology, 12, 192–198.PubMedGoogle Scholar
  22. 22.
    Akhavan Niaki, H., & Samadani, A. A. (2013). DNA methylation and cancer development: Molecular mechanism. Cell Biochemistry and Biophysics. doi: 10.1007/s12013-013-9555-2.
  23. 23.
    Sugai, T., Habano, W., Uesugi, N., Jao, Y. F., Nakamura, S., Abe, K., et al. (2004). Three independent genetic profiles based on mucin expression in early differentiated-type gastric cancer—A new concept of genetic carcinogenesis of early differentiated-type adenocarcinomas. Modern Pathology, 17, 1223–1234.PubMedCrossRefGoogle Scholar
  24. 24.
    Teixeira, A., David, L., Reis, C. A., Costa, J., & Sobrinho-Simoes, M. (2002). Expression of mucins (MUC1, MUC2, MUC5AC, and MUC6) and type 1 lewis antigens in cases with and without Helicobacter pylori colonization in metaplastic glands of the human stomach. The Journal of Pathology, 197, 37–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Babu, S. D., Jayanthi, V., Devaraj, N., Reis, C. A., & Devaraj, H. (2006). Expression profile of mucins (MUC2, MUC5AC and MUC6) in Helicobacter pylori infected pre-neoplastic and neoplastic human gastric epithelium. Mol Cancer, 5, 10.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Johanson, A. H., Frierson, H. F., Zaika, A., Powell, S. M., Roche, J., Crowe, S., et al. (2005). Expression of tight-junction protein claudin-7 is an early event in gastric tumorigenesis. American Journal of Pathology, 167, 577–584.CrossRefGoogle Scholar
  27. 27.
    Brenner, H., Arndt, V., Bode, G., Stegmaier, C., Ziegler, H., et al. (2002). Risk of gastric cancer among smokers infected with Helicobacter pylori. International Journal of Cancer, 98, 446–449.CrossRefGoogle Scholar
  28. 28.
    Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews Cancer, 4, 688–694.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H., & Hatakeyama, M. (2006). Focal adhesion kinase is a substrate and downstream effector of SHP-1 complexed with Helicobacter pylori CagA. Molecular and Cellular Biology, 26, 261–276.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Aung, P. P., Oue, N., Mitani, Y., Nakayama, H., Koshida, K., Noguchi, T., et al. (2006). Systematic search for gastric cancer-specific genes based on SAGE date: Melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene, 25, 2546–2557.PubMedCrossRefGoogle Scholar
  31. 31.
    Oue, N., Mitani, Y., Aung, P. P., Sakakura, C., Takeshima, Y., Kaneko, M., et al. (2005). Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. The Journal of Pathology, 207, 185–198.PubMedCrossRefGoogle Scholar
  32. 32.
    Almeida, R., Almeida, J., Shoshkes, M., Mendes, N., Mesquita, P., Silva, E., et al. (2005). OCT- I is over-expression in intestinal metaplasia and intestinal gastric carcinomas and binds to, but does not transactivate, CDX2 in gastric cells. The Journal of Pathology, 207, 396–401.PubMedCrossRefGoogle Scholar
  33. 33.
    Norbury, C., & Nurse, D. (1992). Animal cell cycles and their control. Review of Biochemistry, 61, 441–470.CrossRefGoogle Scholar
  34. 34.
    Marx, J. (1994). How cells cycle toward cancer. Science (WashingtonDC), 263, 321–379.CrossRefGoogle Scholar
  35. 35.
    Elledge, S. J., & Harper, J. W. (1996). A question of balance: The role of cyclin-kinase inhibitors in development and tumorigenesis. Trends in Cell Biology, 6, 388–392.PubMedCrossRefGoogle Scholar
  36. 36.
    Hall, M., Bates, S., & Peter, G. (1995). Evidence for different mode of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinase, p21 and p27 bind to cyclins. Oncogene, 11, 1581–1588.PubMedGoogle Scholar
  37. 37.
    Chen, J., Kornbluth, P. S., Dynlacht, B. D., & Dutta, A. (1996). Cyclin-binding motifs are essential for the function of p21CIP1. Molecular and Cellular Biology, 16, 4673–4682.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Matsuoka, S., Edwards, M. C., Parker, S., Zhang, P., Baldini, A., Harper, J. W., et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes & Development, 9, 650–662.CrossRefGoogle Scholar
  39. 39.
    Polyak, K., Lee, M.-H., Erdjument-Bromage, Koff, A., Roberts, J. M., Tempst, P., et al. (1994). Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and potential mediator of extracellular antimitogenic signals. Cell, 78, 59–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Michieli, P., Chedid, M., Lin, D., Pierce, J. H., Mercer, W. E., & Givol, D. (1994). Induction of WAFI/CIPI by a p53-independent pathway. Cancer Research, 54, 3391–3395.PubMedGoogle Scholar
  41. 41.
    Margarita, S. B., Ana, I. S., Juan, C. M., Mateo, M. S., Lydia, S. V., Raquel, V., et al. (1997). Cyclin-dependent kinase inhibitor p27KIP1 in lymphoid tissue; P27 expression is inversely proportional to the proliferative index. American Journal of Pathology, 151, 151–159.Google Scholar
  42. 42.
    Silva, E., Teixeira, A., David, L., Carneiro, F., Reis, C. A., Sobrinho-Simoes, J., et al. (2002). Mucins as key molecules for the classification of intestinal metaplasia of the stomach. Virchows Archiv, 440, 311–317.PubMedCrossRefGoogle Scholar
  43. 43.
    Archer, S. Y., & Hodin, R. A. (1999). Histone acetylation and cancer. Current Opinion in Genetics & Development, 9, 171–174.CrossRefGoogle Scholar
  44. 44.
    Issa, J.-P. J., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., & Baylin, S. B. (1994). Methylation of estrogen receptor CpG Island links aging and neoplasia in human colon. Nature Genetics, 7, 536–540.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamilton, S. R., & Aaltonen, L. A. (Eds.). (2000). Pathology and genetics of tumours of the digestive system. World Health Organization Classification of Tumours. Lyon: IARC Press.Google Scholar
  46. 46.
    Jones, P. A., & Taylor, S. M. (1980). Cellular differentiation. Cytidine analogs, and DNA methylation. Cell, 20, 85–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Weinstein, I. B. (2000). Disorders in cell circuitry during multistage carcinogenesis: The role of homeostasis. Carcinogenesis, 21(5), 857–864.PubMedCrossRefGoogle Scholar
  48. 48.
    Greenman, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789–799.PubMedCrossRefGoogle Scholar
  50. 50.
    Diehl, K. M., Keller, E. T., & Ignatoski, K. M. (2007). Why should we still care about oncogenes? Molecular Cancer Therapeutics, 6(2), 418–427.PubMedCrossRefGoogle Scholar
  51. 51.
    Croce, C. M. (2008). Oncogenes and cancer. New England Journal of Medicine, 358(5), 502–511.PubMedCrossRefGoogle Scholar
  52. 52.
    Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7(4), 295–308.PubMedCrossRefGoogle Scholar
  53. 53.
    Forbes, S. A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., et al. (2008). The catalogue of somatic mutations in cancer (COSMIC). Current Protocols in Human Genetic, Chapter 10, Unit 10–11. doi: 10.1002/0471142905.hg1011s57.
  54. 54.
    Kraft, P., Yen, Y. C., Stram, D. O., Morrison, J., & Gauderman, W. J. (2007). Exploiting gene–environment interaction to detect genetic associations. Human Heredity, 63, 111–119.PubMedCrossRefGoogle Scholar
  55. 55.
    Jimeno, A., & Hidalgo, M. (2006). Molecular biomarkers: Their increasing role in the diagnosis, characterization, and therapy guidance in pancreatic cancer. Molecular Cancer Therapeutics, 5(4), 787–796.Google Scholar
  56. 56.
    Haug, U., Wente, M. N., Seiler, C. M., Jesenofsky, R., & Brenner, H. (2011). Stool testing for the early detection of pancreatic cancer: Rationale and current evidence. Expert Review of Molecular Diagnostics, 8(6), 753–759.Google Scholar
  57. 57.
    Kim, C. G., Choi, I. J., Lee, J. Y., Cho, S. J., Nam, B. H., et al. (2009). Biopsy site for detecting Helicobacter pylori infection in patients with gastric cancer. Journal of Gastroenterology and Hepatology, 24, 469–474.PubMedCrossRefGoogle Scholar
  58. 58.
    van Krieken, J. H., et al. (2008). KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: Proposal for an European quality assurance program. Virchows Archiv, 453(5), 417–431.PubMedCrossRefGoogle Scholar
  59. 59.
    Edkins, S., et al. (2006). Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biology & Therapy, 5(8), 928–932.CrossRefGoogle Scholar
  60. 60.
    Brenner, H., Arndt, V., Bode, G., Stegmaier, C., Ziegler, H., et al. (2002). Risk of gastric cancer among smokers infected with Helicobacter pylori. International Journal of Cancer, 98, 446–449.CrossRefGoogle Scholar
  61. 61.
    Shimoyama, T., Everett, S. M., Fukuda, S., Axon, A. T., Dixon, M. F., & Crabtree, J. E. (2001). Influence of smoking and alcohol on gastric chemokine mRNA expression in patients with Helicobacter pylori infection. Journal of Clinical Pathology, 54(4), 332–334.Google Scholar
  62. 62.
    Zambon, C. F., Basso, D., Navaglia, F., Belluco, C., Falda, A., et al. (2005). Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: Interactions influence outcome. Cytokine, 29, 141–152.PubMedCrossRefGoogle Scholar
  63. 63.
    Ince, W. L., et al. (2005). Association of k-ras, and p53 status with the treatment effect of bevacizumab. Journal of the National Cancer Institute, 97(13), 981–989.PubMedCrossRefGoogle Scholar
  64. 64.
    Wang, C., et al. (2003). Prognostic significance microsatellite instability and Ki-ras mutation type in stage II colorectal cancer. Oncology, 64(3), 259–265.PubMedCrossRefGoogle Scholar
  65. 65.
    Ogino, S., et al. (2009). CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut, 58(1), 90–96.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Garcia-Gonzalez, M. A., Lanas, A., Quintero, E., Nicolas, D., Parra-Blanco, A., et al. (2007). Gastric cancer susceptibility is not linked to pro-and anti-inflammatory cytokine gene polymorphisms in whites: A Nationwide Multicenter Study in Spain. American Journal of Gastroenterology, 102, 1878–1892.PubMedCrossRefGoogle Scholar
  67. 67.
    Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9, 102–114.PubMedCrossRefGoogle Scholar
  68. 68.
    Papagiannakopoulos, T., & Kosik, K. S. (2008). MicroRNAs: Regulators of oncogenesis and stemness. BMC Med, 6, 15.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Wijnhoven, B. P., Michael, M. Z., & Watson, D. I. (2007). MicroRNAs and cancer. British Journal of Surgery, 94, 23–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2007). MicroRNAs as oncogenes and tumor suppressors. Developmental Biology, 302, 1–12.PubMedCrossRefGoogle Scholar
  72. 72.
    He, L., & Hannon, G. J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMedCrossRefGoogle Scholar
  73. 73.
    Allegra, E., & Trapasso, S. (2012). Cancer stem cells in head and neck cancer. Onco targets and therapy, 5, 375–383.CrossRefGoogle Scholar
  74. 74.
    Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of with cancer stem cell properties in head and neck squamous cell carcinoma. Proceeding of the National Academy of Sciences USA, 104, 973–978.CrossRefGoogle Scholar
  75. 75.
    Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.PubMedCrossRefGoogle Scholar
  76. 76.
    Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.PubMedCrossRefGoogle Scholar
  77. 77.
    Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.PubMedCrossRefGoogle Scholar
  78. 78.
    Yapeng, Hu, & Liwu, Fu. (2012). Targeting cancer stem cells. American Journal of Cancer Research, 2(3), 340–356.Google Scholar
  79. 79.
    La porta, C. A. M. (2012). Thoughts about cancer Stem cells in solid tumors. World Journal of Stem Cells, 4(3), 17–20.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Hellsten, R., Johansson, M., Dahlman, A., Sterner, O., & Biartell, A. (2011). Galiellalactone inhibits stem cell-like ALDH- positive prostate cancer cells. PLoS ONE, 6, e22118.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Dou, J., Jiang, C. L., Wang, J., Zhang, X., Zhao, F. S., Hu, W. H., et al. (2011). Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biology International, 35(3), 227–234.Google Scholar
  82. 82.
    He, J., Liu, Y., Zhu, T., Zhu, J., Dimeco, F., Vescovi, A. L., et al. (2012). CD90 is identified as a marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Molecular & Cellular Proteomics, 11(6), M111.010744.Google Scholar
  83. 83.
    Kumar, S. M., Liu, S., Lu, H., Zhang, H., Zhang, P. J., Gimotty, P. A., et al. (2012). Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene, 31(47), 4898–4911.Google Scholar
  84. 84.
    Balber, A. E. (2011). Concise review: Aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues; characteristics, activities, and emerging uses in regenerative medicine. Stem Cells, 29, 570–575.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen, S. Y., Huang, Y. C., Liu, S. P., Tsai, F. J., Shyu, W. C., & Lin, S. Z. (2011). An overview of concepts for cancer stem cells. Cell Transplantation, 20, 113–120.PubMedCrossRefGoogle Scholar
  86. 86.
    Han, M. E., & Oh, S. O. (2013). Gastric stem cells and gastric cancer stem cells. Anatomy & Cell Biology, 46(1), 8–18.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cellular and Molecular Biology Research CenterBabol University of Medical SciencesBabolIran

Personalised recommendations