Skip to main content
Log in

Luteinizing Hormone Receptors are Confined in Mesoscale Plasma Membrane Microdomains Throughout Recovery from Receptor Desensitization

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We examined the involvement of membrane microdomains during human luteinizing hormone (LH) receptor recovery from receptor desensitization after removal of bound hormone. Lateral motions of individual desensitized LH receptors expressed on the surface of Chinese hamster ovary cells and transient association of these receptors with detergent-resistant membrane (DRM) microdomains isolated using isopycnic sucrose gradient ultracentrifugation were assessed. Single particle tracking experiments showed untreated individual LH receptors to be confined within cell-surface membrane compartments with an average diameter of 199 ± 17 nm and associated with membrane fractions characteristic of bulk plasma membrane. After brief exposure to human chorionic gonadotropin (hCG), LH receptors remained for several hours desensitized to hCG challenge. Throughout this period, significantly increased numbers of LH receptors were confined within smaller diameter (<120 nm) membrane compartments and associated with DRM fragments of characteristically low density. By 5 h, when cells again produced cAMP in response to hCG, unoccupied LH receptors were found in larger 169 ± 22 nm diameter cell-surface membrane compartments and >90 % of LH receptors were again found in high-density membrane fragments characteristic of bulk plasma membrane. Taken together, these results suggest that, during recovery from LH receptor desensitization, LH receptors are both located with DRM lipid environments and confined within small, mesoscale (80–160 nm) cell-surface compartments. This may reflect hormone-driven translocation of receptors into DRM and formation there of protein aggregates too large or too rigid to permit effective signaling. Once bound hormone is removed, receptor structures would have to dissociate before receptors can again signal effectively in response to hormone challenge. Moreover, such larger protein complexes would be more easily constrained laterally by membrane structural elements and so appear resident in smaller cell-surface compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Violin, J. D., DiPilato, L. M., Yildirim, N., Elston, T. C., Zhang, J., & Lefkowitz, R. J. (2008). ß2-Adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. Journal of Biological Chemistry, 283, 2949–2961.

    Article  CAS  PubMed  Google Scholar 

  2. Downs, S. M., & Hunzicker-Dunn, M. (1995). Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte–cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Developmental Biology, 172, 72–85.

    Article  CAS  PubMed  Google Scholar 

  3. Smith, S. M., Lei, Y., Liu, J., Cahill, M. E., Hagen, G. M., Barisas, B. G., et al. (2006). Luteinizing hormone receptors translocate to plasma membrane microdomains after binding of human chorionic gonadotropin. Endocrinology, 147, 1789–1795.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf-Ringwall, A. L., Winter, P. W., Liu, J., Van Orden, A. K., Roess, D. A., & Barisas, B. G. (2011). Restricted lateral diffusion of luteinizing hormone receptors in membrane microdomains. Journal of Biological Chemistry, 286, 29818–29827.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Claing, A., Laporte, S. A., Caron, M. G., & Lefkowitz, R. J. (2002). Endocytosis of G protein-coupled receptors: Roles of G protein-coupled receptor kinases and β-arrestin proteins. Progress in Neurobiology, 66, 61–79.

    Article  CAS  PubMed  Google Scholar 

  6. Horvat, R. D., Barisas, B. G., & Roess, D. A. (2001). Luteinizing hormone receptors are self-associated in slowly diffusing complexes during receptor desensitization. Molecular Endocrinology, 15, 534–542.

    Article  CAS  PubMed  Google Scholar 

  7. Dix, C. J., Schumacher, M., & Cooke, B. A. (1982). Desensitization of tumor Leydig cells by lutropin: Evidence for uncoupling of the lutropin receptor from the guanine nucleotide-binding protein. Biochemistry Journal, 202, 739–745.

    CAS  Google Scholar 

  8. Lamm, M. L. G., & Hunzicker-Dunn, M. (1994). Phosphorylation-independent desensitzation of the luteinizing hormone/chorionic gonadotropin receptor in porcine follicular membranes. Molecular Endocrinology, 8(11), 1537–1546.

    CAS  PubMed  Google Scholar 

  9. Roess, D. A., Niswender, G. D., & Barisas, B. G. (1988). Cytochalasins and colchicine increase the lateral mobility of human chorionic gonadotropin-occupied luteinizing hormone receptors on ovine luteal cells. Endocrinology, 122, 261–269.

    Article  CAS  PubMed  Google Scholar 

  10. Kusumi, A., Shirai, Y. M., Koyama-Honda, I., Suzuki, K. G. N., & Fujiwara, T. K. (2010). Hierarchical organization of the plasma membrane: Investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Letters, 584, 1814–1823.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobson, K., Mouritsen, O. G., & Anderson, R. G. (2007). Lipid rafts: At a crossroad between cell biology and physics. Nature Cell Biology, 9, 7–14.

    Article  CAS  PubMed  Google Scholar 

  12. Pike, L. J. (2006). Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. Journal of Lipid Research, 47, 1597–1598.

    Article  CAS  PubMed  Google Scholar 

  13. Lajoie, P., Goetz, J. G., Dennis, J. W., & Nabi, I. R. (2009). Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. The Journal of Cell Biology, 185, 381–385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 1, 31–39.

    Article  CAS  PubMed  Google Scholar 

  15. Hunzicker-Dunn, M., Barisas, B. G., Song, J., & Roess, D. A. (2003). Membrane organization of luteinizing hormone receptors differs between actively signaling and desensitized receptors. Journal of Biological Chemistry, 278, 42744–42749.

    Article  CAS  PubMed  Google Scholar 

  16. Amsterdam, A., Berkowitz, A., Nimrod, A., & Kohen, F. (1980). Aggregation of luteinizing hormone receptors in granulosa cells: A possible mechanism for desensitization to the hormone. Proceedings of the National Academy of Sciences USA, 77, 3440–3445.

    Article  CAS  Google Scholar 

  17. Sanchez-Yague, J., Rodriquez, M. C., Segaloff, D. L., & Ascoli, M. (1992). Truncation of the cytoplasmic tail of the lutropin/choriogonadotropin receptor prevents agonist-induced uncoupling. Journal of Biological Chemistry, 267, 7217–7220.

    CAS  PubMed  Google Scholar 

  18. Roess, D. A., Smith, S. M. L., Winter, P., Zhou, J., Dou, P., Baruah, B., et al. (2008). Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. Chemistry & Biodiversity, 5, 1558–1570.

    Article  CAS  Google Scholar 

  19. Winter, P. W., Al-Qatati, A., Wolf-Ringwall, A. L., Schoeberl, S., Chatterjee, P. B., Barisas, B. G., et al. (2012). The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Transactions, 41, 6419–6430.

    Article  CAS  PubMed  Google Scholar 

  20. Kusumi, A., Sako, Y., & Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophysical Journal, 65, 2021–2040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Barisas, B. G., Smith, S. M., Liu, J., Song, J., Hagen, G. M., Pecht, I., et al. (2007). Compartmentalization of the Type I Fc epsilon receptor and MAFA on mast cell membranes. Biophysical Chemistry, 126, 209–217.

    Article  CAS  PubMed  Google Scholar 

  22. Saxton, M. J. (1997). Single-particle tracking: The distribution of diffusion coefficients. Biophysical Journal, 72, 1744–1753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lei, Y., Hagen, G. M., Smith, S. M., Liu, J., Barisas, G., Roess, D. A., et al. (2007). Constitutively-active human LH receptors are self-associated and located in rafts. Molecular and Cellular Endocrinology, 260–262, 65–72.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lefkowitz, R. (1998). G protein-coupled receptors. The Journal of Biological Chemistry, 273, 18677–18680.

    Article  CAS  PubMed  Google Scholar 

  25. Horvat, R. D., Nelson, S., Clay, C. M., Barisas, B. G., & Roess, D. A. (1999). Intrinsically fluorescent luteinizing hormone receptor demonstrates hormone-driven aggregation. Biochemical and Biophysical Research Communications, 255, 382–385.

    Article  CAS  PubMed  Google Scholar 

  26. Luborsky, J., Slater, W., & Behrman, H. (1984). Luteinizing hormone (LH) receptor aggregation: Modification of ferritin-LH binding and aggregation by prostaglandin F and ferritin-LH. Endocrinology, 115, 2217–2225.

    Article  CAS  PubMed  Google Scholar 

  27. Linderman, J. J. (2009). Modeling of G-protein-coupled receptor signaling pathways. Journal of Biological Chemistry, 284, 5427–5431.

    Article  CAS  PubMed  Google Scholar 

  28. Francis, S. H., Blount, M. A., & Corbin, J. D. (2011). Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiological Reviews, 91, 651–690.

    Article  CAS  PubMed  Google Scholar 

  29. Hunzicker-Dunn, M., Barisas, G., Song, J., & Roess, D. A. (2003). Membrane organization of luteinizing hormone receptors differs between actively signaling and desensitized receptors. Journal of Biological Chemistry, 278, 42744–42749.

    Article  CAS  PubMed  Google Scholar 

  30. Niswender, G. D., Roess, D. A., Sawyer, H. R., Silvia, W. J., & Barisas, B. G. (1985). Differences in the lateral mobility of receptors for luteinizing hormone (LH) in the luteal cell plasma membrane when occupied by ovine LH versus human chorionic gonadotropin. Endocrinology, 116, 164–169.

    Article  CAS  PubMed  Google Scholar 

  31. Dragsten, P., Henkart, P., Blumenthal, R., Weinstein, J., & Schlessinger, J. (1979). Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma membranes. Proceedings of the National Academy of Science USA, 76, 5163–5167.

    Article  CAS  Google Scholar 

  32. Godin, A. G., Costantino, S., Lorenzo, L.-E., Swift, J. L., Sergeev, M., Ribeiro-da-Silva, A., et al. (2011). Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis. Proceedings of the National Academy of Sciences USA, 108, 7010–7015.

    Article  CAS  Google Scholar 

  33. Saffarian, S., Li, U., Elson, E., & Pike, L. (2007). Oligomerization of the EGF receptor investigated by life cell fluorescence intensity distribution analysis. Biophysical Journal, 93, 1021–1031.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Roess, D. A., Brady, C. J., & Barisas, B. G. (2000). Biological function of the LH receptor is associated with slow receptor rotational diffusion. Biochimica et Biophysica Acta, 1464, 242–250.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z., Rudd, M. D., Hernandez-Gonzalez, I., Gonzalez-Robayna, I., Fan, H.-Y., Zeleznik, A. J., et al. (2009). FSH and FOXO1 Regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Molecular Endocrinology, 23, 649–661.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ying Lei for constructing the FLAG-tagged LH receptor expressing CHO cell line used here. This work was supported, in part, by NIH Grant R03 HD41980 (D.A.R.), by the U.S.D.A. Animal Health and Disease Program at Colorado State University (D.A.R.) and by NSF Grant MCB-1024669 (B.G.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. George Barisas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf-Ringwall, A.L., Winter, P.W., Roess, D.A. et al. Luteinizing Hormone Receptors are Confined in Mesoscale Plasma Membrane Microdomains Throughout Recovery from Receptor Desensitization. Cell Biochem Biophys 68, 561–569 (2014). https://doi.org/10.1007/s12013-013-9738-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9738-x

Keywords

Navigation