Cell Biochemistry and Biophysics

, Volume 68, Issue 3, pp 497–509 | Cite as

Delphinidin Activates NFAT and Induces IL-2 Production Through SOCE in T Cells

  • Evelyn Jara
  • María A. Hidalgo
  • Juan L. Hancke
  • Alejandra I. Hidalgo
  • Sebastian Brauchi
  • Luisa Nuñez
  • Carlos Villalobos
  • Rafael A. BurgosEmail author
Original Paper


Delphinidin is an anthocyanidin that possesses antioxidant and anti-inflammatory effects; however, some reports suggest that delphinidin has pro-inflammatory properties. For this reason, we assessed the effect of delphinidin on cytokine production in T cells. We demonstrated that delphinidin increased the cytosolic-free Ca2+ concentration by releasing Ca2+ from intracellular stores and increasing Ca2+ entry. The putative Ca2+ release activated Ca2+ (CRAC) channel inhibitors BTP2 and gadolinium reduced the calcium entry stimulated by the anthocyanidin. Delphinidin induced nuclear factor of activated T cells (NFAT) translocation and NFAT-Luc activity in Jurkat cells and was dependent on the CRAC channel and calcineurin pathway. Delphinidin increased the mRNA expression and production of IL-2 in Jurkat cells and was inhibited by BTP2 and cyclosporine A. Using peripheral blood lymphocytes, we demonstrated that delphinidin increased the production of IL-2 and IFN-γ and was inhibited by BTP2. Taken together, our results suggest that delphinidin exerts immunostimulatory effects on T cells by increasing cytokine production through CRAC channel and NFAT activation.


Delphinidin Calcium T cells NFAT Cytokines 



Store-operated calcium entry




Ca2+ release-activated Ca2+



This work was supported by Grants from Consorcio de Tecnología e Innovación para la Salud CTI-Salud (CTE-06), Chile (CONICYT 21090900 and CONICYT AT-24100037).

Supplementary material

12013_2013_9728_MOESM1_ESM.pptx (79 kb)
Supplementary material 1 (PPTX 79 kb)
12013_2013_9728_MOESM2_ESM.pptx (87 kb)
Supplementary material 2 (PPTX 87 kb)
12013_2013_9728_MOESM3_ESM.pptx (90 kb)
Supplementary material 3 (PPTX 89 kb)
12013_2013_9728_MOESM4_ESM.pptx (106 kb)
Supplementary material 4 (PPTX 106 kb)
12013_2013_9728_MOESM5_ESM.pptx (79 kb)
Supplementary material 5 (PPTX 79 kb)


  1. 1.
    Barak, V., Birkenfeld, S., Halperin, T., & Kalickman, I. (2002). The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. The Israel Medical Association Journal, 4, 919–922.PubMedGoogle Scholar
  2. 2.
    McAnulty, L. S., Nieman, D. C., Dumke, C. L., Shooter, L. A., Henson, D. A., Utter, A. C., et al. (2011). Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Applied Physiology, Nutrition and Metabolism, 36, 976–984.CrossRefGoogle Scholar
  3. 3.
    Waknine-Grinberg, J. H., El-On, J., Barak, V., Barenholz, Y., & Golenser, J. (2009). The immunomodulatory effect of Sambucol on leishmanial and malarial infections. Planta Medica, 75, 581–586.PubMedCrossRefGoogle Scholar
  4. 4.
    Barak, V., Halperin, T., & Kalickman, I. (2001). The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. European cytokine network, 12, 290–296.PubMedGoogle Scholar
  5. 5.
    Wang, Y. P., Cheng, M. L., Zhang, B. F., Mu, M., Zhou, M. Y., Wu, J., et al. (2010). Effect of blueberry on hepatic and immunological functions in mice. Hepatobiliary & Pancreatic Diseases International, 9, 164–168.Google Scholar
  6. 6.
    Afaq, F., Syed, D. N., Malik, A., Hadi, N., Sarfaraz, S., Kweon, M. H., et al. (2007). Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. The Journal of Investigative Dermatology, 127, 222–232.PubMedCrossRefGoogle Scholar
  7. 7.
    Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64, 923–933.PubMedCrossRefGoogle Scholar
  8. 8.
    Juranic, Z., & Zizak, Z. (2005). Biological activities of berries: From antioxidant capacity to anti-cancer effects. Biofactors, 23, 207–211.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang, J., & Mazza, G. (2002). Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. Journal of Agriculture and Food Chemistry, 50, 4183–4189.CrossRefGoogle Scholar
  10. 10.
    Seong, A. R., Yoo, J. Y., Choi, K., Lee, M. H., Lee, Y. H., Lee, J., et al. (2011). Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-kappaB acetylation in fibroblast-like synoviocyte MH7A cells. Biochemical and Biophysical Research Communications, 410, 581–586.PubMedCrossRefGoogle Scholar
  11. 11.
    Feske, S. (2007). Calcium signalling in lymphocyte activation and disease. Nature Reviews Immunology, 7, 690–702.PubMedCrossRefGoogle Scholar
  12. 12.
    Putney, J. W, Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium, 7, 1–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Zitt, C., Strauss, B., Schwarz, E. C., Spaeth, N., Rast, G., Hatzelmann, A., et al. (2004). Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. Journal of Biological Chemistry, 279, 12427–12437.PubMedCrossRefGoogle Scholar
  14. 14.
    Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A., & Crabtree, G. R. (1988). Identification of a putative regulator of early T cell activation genes. Science, 241, 202–205.PubMedCrossRefGoogle Scholar
  15. 15.
    Rao, A., Luo, C., & Hogan, P. G. (1997). Transcription factors of the NFAT family: Regulation and function. Annual Review of Immunology, 15, 707–747.PubMedCrossRefGoogle Scholar
  16. 16.
    Crabtree, G. R., & Olson, E. N. (2002). NFAT signaling: Choreographing the social lives of cells. Cell, 109(Suppl), S67–S79.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu, J., & McKeon, F. (1999). NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature, 398, 256–260.PubMedCrossRefGoogle Scholar
  18. 18.
    Okamura, H., Aramburu, J., Garcia-Rodriguez, C., Viola, J. P., Raghavan, A., Tahiliani, M., et al. (2000). Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Molecular Cell, 6, 539–550.PubMedCrossRefGoogle Scholar
  19. 19.
    Shibasaki, F., Hallin, U., & Uchino, H. (2002). Calcineurin as a multifunctional regulator. Journal of Biochemistry, 131, 1–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Deist, F., Hivroz, C., Partiseti, M., Thomas, C., Buc, H. A., Oleastro, M., et al. (1995). A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood, 85, 1053–1062.PubMedGoogle Scholar
  21. 21.
    Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M., & Rao, A. (2001). Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunology, 2, 316–324.PubMedCrossRefGoogle Scholar
  22. 22.
    Feske, S., Prakriya, M., Rao, A., & Lewis, R. S. (2005). A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. Journal of Experimental Medicine, 202, 651–662.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Partiseti, M., Le Deist, F., Hivroz, C., Fischer, A., Korn, H., & Choquet, D. (1994). The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. Journal of Biological Chemistry, 269, 32327–32335.PubMedGoogle Scholar
  24. 24.
    Weiss, A., Wiskocil, R. L., & Stobo, J. D. (1984). The role of T3 surface molecules in the activation of human T cells: A two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. Journal of Immunology, 133, 123–128.Google Scholar
  25. 25.
    Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., et al. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 441, 179–185.PubMedCrossRefGoogle Scholar
  26. 26.
    Feske, S., Draeger, R., Peter, H. H., Eichmann, K., & Rao, A. (2000). The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. Journal of Immunology, 165, 297–305.Google Scholar
  27. 27.
    Baldari, C. T., Di Somma, M. M., Majolini, M. B., Ulivieri, C., Milia, E., & Telford, J. L. (1998). NF-AT-luciferase reporter T cell lines as tools to screen immunosuppressive drugs. Biologicals, 26, 1–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Blaecke, A., Delneste, Y., Herbault, N., Jeannin, P., Bonnefoy, J. Y., Beck, A., et al. (2002). Measurement of nuclear factor-kappa B translocation on lipopolysaccharide-activated human dendritic cells by confocal microscopy and flow cytometry. Cytometry, 48, 71–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Oh-hora, M., & Rao, A. (2008). Calcium signaling in lymphocytes. Current Opinion in Immunology, 20, 250–258.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, S. L., Yeromin, A. V., Zhang, X. H., Yu, Y., Safrina, O., Penna, A., et al. (2006). Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 9357–9362.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zweifach, A., & Lewis, R. S. (1993). Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proceedings of the National Academy of Sciences of the United States of America, 90, 6295–6299.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Xu-Friedman, M. A., & Regehr, W. G. (1999). Presynaptic strontium dynamics and synaptic transmission. Biophysical Journal, 76, 2029–2042.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Christian, E. P., Spence, K. T., Togo, J. A., Dargis, P. G., & Patel, J. (1996). Calcium-dependent enhancement of depletion-activated calcium current in Jurkat T lymphocytes. Journal of Membrane Biology, 150, 63–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Zweifach, A., & Lewis, R. S. (1996). Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes. Journal of General Physiology, 107, 597–610.PubMedCrossRefGoogle Scholar
  35. 35.
    Macian, F. (2005). NFAT proteins: Key regulators of T-cell development and function. Nature Reviews Immunology, 5, 472–484.PubMedCrossRefGoogle Scholar
  36. 36.
    Harborne, J. B. (1988). Flavonoids in the environment: Structure-activity relationships. Progress in Clinical and Biological Research, 280, 17–27.PubMedGoogle Scholar
  37. 37.
    Bell, D. R., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100, 1164–1170.PubMedCrossRefGoogle Scholar
  38. 38.
    Vuorela, S., Salminen, H., Makela, M., Kivikari, R., Karonen, M., & Heinonen, M. (2005). Effect of plant phenolics on protein and lipid oxidation in cooked pork meat patties. Journal of Agriculture and Food Chemistry, 53, 8492–8497.CrossRefGoogle Scholar
  39. 39.
    Noda, Y., Kaneyuki, T., Mori, A., & Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin. Journal of Agriculture and Food Chemistry, 50, 166–171.CrossRefGoogle Scholar
  40. 40.
    Azevedo, L., Alves de Lima, P. L., Gomes, J. C., Stringheta, P. C., Ribeiro, D. A., & Salvadori, D. M. (2007). Differential response related to genotoxicity between eggplant (Solanum melanogena) skin aqueous extract and its main purified anthocyanin (delphinidin) in vivo. Food and Chemical Toxicology, 45, 852–858.PubMedCrossRefGoogle Scholar
  41. 41.
    Galli, R. L., Shukitt-Hale, B., Youdim, K. A., & Joseph, J. A. (2002). Fruit polyphenolics and brain aging: Nutritional interventions targeting age-related neuronal and behavioral deficits. Annals of the New York Academy of Sciences, 959, 128–132.PubMedCrossRefGoogle Scholar
  42. 42.
    Youdim, K. A., & Deans, S. G. (2000). Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. British Journal of Nutrition, 83, 87–93.PubMedGoogle Scholar
  43. 43.
    Andriambeloson, E., Magnier, C., Haan-Archipoff, G., Lobstein, A., Anton, R., Beretz, A., et al. (1998). Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. Journal of Nutrition, 128, 2324–2333.PubMedGoogle Scholar
  44. 44.
    Demrow, H. S., Slane, P. R., & Folts, J. D. (1995). Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation, 91, 1182–1188.PubMedCrossRefGoogle Scholar
  45. 45.
    Renaud, S., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 339, 1523–1526.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin, S., Andriambeloson, E., Takeda, K., & Andriantsitohaina, R. (2002). Red wine polyphenols increase calcium in bovine aortic endothelial cells: A basis to elucidate signalling pathways leading to nitric oxide production. British Journal of Pharmacology, 135, 1579–1587.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Panyi, G., Vamosi, G., Bodnar, A., Gaspar, R., & Damjanovich, S. (2004). Looking through ion channels: Recharged concepts in T-cell signaling. Trends in Immunology, 25, 565–569.PubMedCrossRefGoogle Scholar
  48. 48.
    Takezawa, R., Cheng, H., Beck, A., Ishikawa, J., Launay, P., Kubota, H., et al. (2006). A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Molecular Pharmacology, 69, 1413–1420.PubMedCrossRefGoogle Scholar
  49. 49.
    Zweifach, A. (2000). Target-cell contact activates a highly selective capacitative calcium entry pathway in cytotoxic T lymphocytes. Journal of Cell Biology, 148, 603–614.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Cvorovic, J., Tramer, F., Granzotto, M., Candussio, L., Decorti, G., & Passamonti, S. (2010). Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Archives of Biochemistry and Biophysics, 501, 151–157.PubMedCrossRefGoogle Scholar
  51. 51.
    Grupe, M., Myers, G., Penner, R., & Fleig, A. (2010). Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium, 48, 1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Hou, D. X., Ose, T., Lin, S., Harazoro, K., Imamura, I., Kubo, M., et al. (2003). Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: Structure-activity relationship and mechanisms involved. International Journal of Oncology, 23, 705–712.PubMedGoogle Scholar
  53. 53.
    Aramburu, J., Garcia-Cozar, F., Raghavan, A., Okamura, H., Rao, A., & Hogan, P. G. (1998). Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Molecular Cell, 1, 627–637.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu, Y., Cseresnyes, Z., Randall, W. R., & Schneider, M. F. (2001). Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. Journal of Cell Biology, 155, 27–39.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Zhu, J., Shibasaki, F., Price, R., Guillemot, J. C., Yano, T., Dotsch, V., et al. (1998). Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell, 93, 851–861.PubMedCrossRefGoogle Scholar
  56. 56.
    Djuric, S. W., BaMaung, N. Y., Basha, A., Liu, H., Luly, J. R., Madar, D. J., et al. (2000). 3,5-Bis(trifluoromethyl)pyrazoles: A novel class of NFAT transcription factor regulator. Journal of Medicinal Chemistry, 43, 2975–2981.PubMedCrossRefGoogle Scholar
  57. 57.
    Trevillyan, J. M., Chiou, X. G., Chen, Y. W., Ballaron, S. J., Sheets, M. P., Smith, M. L., et al. (2001). Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. Journal of Biological Chemistry, 276, 48118–48126.PubMedGoogle Scholar
  58. 58.
    Sieber, M., & Baumgrass, R. (2009). Novel inhibitors of the calcineurin/NFATc hub: Alternatives to CsA and FK506? Cell Communication and Signaling, 7, 25.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Manger, B., Hardy, K. J., Weiss, A., & Stobo, J. D. (1986). Differential effect of cyclosporin A on activation signaling in human T cell lines. Journal of Clinical Investigation, 77, 1501–1506.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Hou, D. X., Yanagita, T., Uto, T., Masuzaki, S., & Fujii, M. (2005). Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochemical Pharmacology, 70, 417–425.PubMedCrossRefGoogle Scholar
  61. 61.
    Thomasset, S., Teller, N., Cai, H., Marko, D., Berry, D. P., Steward, W. P., et al. (2009). Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs? Cancer Chemotherapy and Pharmacology, 64, 201–211.PubMedCrossRefGoogle Scholar
  62. 62.
    Rizzo, A., Pallone, F., Monteleone, G., & Fantini, M. C. (2011). Intestinal inflammation and colorectal cancer: A double-edged sword? World Journal of Gastroenterology, 17, 3092–3100.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Gerber, S. A., Sedlacek, A. L., Cron, K. R., Murphy, S. P., Frelinger, J. G., & Lord, E. M. (2013). IFN-gamma mediates the antitumor effects of radiation therapy in a murine colon tumor. American Journal of Pathology, 182, 2345–2354.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Evelyn Jara
    • 1
  • María A. Hidalgo
    • 1
  • Juan L. Hancke
    • 1
  • Alejandra I. Hidalgo
    • 1
  • Sebastian Brauchi
    • 2
  • Luisa Nuñez
    • 3
  • Carlos Villalobos
    • 3
  • Rafael A. Burgos
    • 1
    Email author
  1. 1.Institute of Pharmacology and MorphophysiologyUniversidad Austral de ChileValdiviaChile
  2. 2.Institute of Physiology, Faculty of MedicineUniversidad Austral de ChileValdiviaChile
  3. 3.Spanish Research Council, Institute of Molecular Biology and Genetics University of ValladolidValladolidSpain

Personalised recommendations