Cell Biochemistry and Biophysics

, Volume 68, Issue 2, pp 397–406 | Cite as

Impact of Hyperhomocysteinemia on Breast Cancer Initiation and Progression: Epigenetic Perspective

  • Shaik Mohammad Naushad
  • Cheruku Apoorva Reddy
  • Konda Kumaraswami
  • Shree Divyya
  • Srigiridhar Kotamraju
  • Suryanarayana Raju Gottumukkala
  • Raghunadha Rao Digumarti
  • Vijay Kumar KutalaEmail author
Original Paper


Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .


Epigenetics Homocysteine Methionine dependency phenotype One-carbon metabolism 



This work was supported by the grant funded by Indian Council of Medical Research (ICMR), New Delhi (Ref No. 5/13/32/2007), and Department of Biotechnology (BT/PR9637/BRB/10/582/2007). VKK and SGK are recipients of Ramanujan Fellowship awarded by Department of Science and Technology, Government of India. SD is recipient of Lady Tata Junior Research Fellowship.


  1. 1.
    Hoffman, R. M. (1984). Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochimica et Biophysica Acta, 738, 49–87.PubMedGoogle Scholar
  2. 2.
    Halpern, B. C., Clark, B. R., Hardy, D. N., Halpern, R. M., & Smith, R. A. (1974). The effect of replacement of methionine by homocysteine on survival of malignant and normal adult mammalian cells in culture. Proceedings of the National Academy of Sciences of the United States of America, 71, 1133–1136.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mecham, J. O., Rowitch, D., Wallace, C. D., Stern, P. H., & Hoffman, R. M. (1983). The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochemical and Biophysical Research Communications, 117, 429–434.PubMedCrossRefGoogle Scholar
  4. 4.
    Judde, J. G., Ellis, M., & Frost, P. (1989). Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Research, 49(17), 4859–4865.PubMedGoogle Scholar
  5. 5.
    Zhang, W., Braun, A., Bauman, Z., Olteanu, H., Madzelan, P., & Banerjee, R. (2005). Expression profiling of homocysteine junction enzymes in the NCI60 panel of human cancer cell lines. Cancer Research, 65(4), 1554–1560.PubMedCrossRefGoogle Scholar
  6. 6.
    Carson, D. A., Willis, E. H., & Kamatani, N. (1983). Metabolism to methionine and growth stimulation by 5′-methylthioadenosine and 5′-methylthioinosine in mammalian cells. Biochemical and Biophysical Research Communications, 112, 391–397.PubMedCrossRefGoogle Scholar
  7. 7.
    Crott, J., Thomas, P., & Fenech, M. (2001). Normal human lymphocytes exhibit a wide range of methionine-dependency which is related to altered cell division but not micronucleus frequency. Mutagenesis, 16, 317–322.PubMedCrossRefGoogle Scholar
  8. 8.
    Hall, C. A., Begley, J. A., & Chu, R. C. (1986). Methionine dependency of cultured human lymphocytes. Proceedings of the Society for Experimental Biology and Medicine, 182, 215–220.PubMedCrossRefGoogle Scholar
  9. 9.
    James, S. J., Yin, L., & Swendseid, M. E. (1989). DNA strand break accumulation, thymidylate synthesis and NAD levels in lymphocytes from methyl donor-deficient rats. Journal of Nutrition, 119, 661–664.PubMedGoogle Scholar
  10. 10.
    Beetstra, S., Suthers, G., Dhillon, V., Salisbury, C., Turner, J., Altree, M., et al. (2008). Methionine-dependence phenotype in the one-carbon metabolic pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 17(10), 2565–2571.CrossRefGoogle Scholar
  11. 11.
    Naushad, S. M., Pavani, A., Digumarti, R. R., Gottumukkala, S. R., & Kutala, V. K. (2011). Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Molecular Biology Reports, 38(8), 4893–4901.PubMedCrossRefGoogle Scholar
  12. 12.
    Gatt, A., Makris, A., Cladd, H., Burcombe, R. J., Smith, J. M., Cooper, P., et al. (2007). Hyperhomocysteinemia in women with advanced breast cancer. International Journal of Laboratory Hematology, 29(6), 421–425.PubMedCrossRefGoogle Scholar
  13. 13.
    Ryu, C. S., Kwak, H. C., Lee, K. S., Kang, K. W., Oh, S. J., Lee, K. H., et al. (2011). Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells. Toxicology and Applied Pharmacology, 255(1), 94–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Evron, E., Dooley, W. C., Umbricht, C. B., Rosenthal, D., Sacchi, N., Gabrielson, E., et al. (2001). Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet, 357, 1335–1336.PubMedCrossRefGoogle Scholar
  15. 15.
    Fackler, M. J., McVeigh, M., Mehrotra, J., Blum, M. A., Lange, J., Lapides, A., et al. (2004). Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Research, 64, 4442–4452.PubMedCrossRefGoogle Scholar
  16. 16.
    Fackler, M. J., Malone, K., Zhang, Z., Schilling, E., Garrett-Mayer, E., Swift-Scanlan, T., et al. (2006). Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clinical Cancer Research, 12, 3306–3310.PubMedCrossRefGoogle Scholar
  17. 17.
    Müller, H. M., Widschwendter, A., Fiegl, H., Ivarsson, L., Goebel, G., Perkmann, E., et al. (2003). DNA methylation in serum of breast cancer patients: An independent prognostic marker. Cancer Research, 63, 7641–7645.PubMedGoogle Scholar
  18. 18.
    Mangia, A., Tommasi, S., Bruno, M., Malfettone, A., D’Amico, C., Zito, F. A., et al. (2010). Histological features of extratumoral breast lesions as a predictive factor of familial breast cancer. Oncology Reports, 23(6), 1641–1645.PubMedCrossRefGoogle Scholar
  19. 19.
    Han, S. H., Lee, K. R., Lee, D. G., Kim, B. Y., Lee, K. E., & Chung, W. S. (2006). Mutation analysis of BRCA1 and BRCA2 from 793 Korean patients with sporadic breast cancer. Clinical Genetics, 70(6), 496–501.PubMedCrossRefGoogle Scholar
  20. 20.
    Mohammad, N. S., Yedluri, R., Addepalli, P., Gottumukkala, S. R., Digumarti, R. R., & Kutala, V. K. (2011). Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Molecular and Cellular Biochemistry, 349(1–2), 159–167.PubMedCrossRefGoogle Scholar
  21. 21.
    Tan, E. Y., Campo, L., Han, C., Turley, H., Pezzella, F., Gatter, K., et al. (2007). BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clinical Cancer Research, 13(2 Pt 1), 467–474.PubMedCrossRefGoogle Scholar
  22. 22.
    Holstege, H., Horlings, H. M., Velds, A., Langerød, A., Børresen-Dale, A. L., van de Vijver, M. J., et al. (2010). BRCA1-mutated and basal-like breast cancers have similar aCGH profiles and a high incidence of protein truncating TP53 mutations. BMC Cancer, 10, 654.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tischkowitz, M. D., & Foulkes, W. D. (2006). The basal phenotype of BRCA1-related breast cancer: past, present and future. Cell Cycle, 5(9), 963–967.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, J. S., Fackler, M. J., Lee, J. H., Choi, C., Park, M. H., Yoon, J. H., et al. (2010). Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biology & Therapy, 9(12), 1017–1024.CrossRefGoogle Scholar
  25. 25.
    Naushad, S. M., Pavani, A., Rupasree, Y., Divyya, S., Deepti, S., Digumarti, R. R., Gottumukkala, S. R., Prayaga, A., Kutala, V. K. (2011). Aberration in one-carbon metabolism influence molecular phenotype and grade of breast cancer. Molecular Carcinogenesis. doi: 10.1002/mc.21830.
  26. 26.
    Joosse, S. A., Brandwijk, K. I., Mulder, L., Wesseling, J., Hannemann, J., & Nederlof, P. M. (2011). Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes, Chromosomes and Cancer, 50(2), 71–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Wei, M., Xu, J., Dignam, J., Nanda, R., Sveen, L., Fackenthal, J., et al. (2008). Estrogen receptor alpha, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Research and Treatment, 111(1), 113–120.PubMedCrossRefGoogle Scholar
  28. 28.
    Pepe, C., Guidugli, L., Sensi, E., Aretini, P., D’Andrea, E., Montagna, M., et al. (2007). Methyl group metabolism gene polymorphisms as modifier of breast cancer risk in Italian BRCA1/2 carriers. Breast Cancer Research and Treatment, 103(1), 29–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.PubMedCrossRefGoogle Scholar
  30. 30.
    Karray-Chouayekh, S., Trifa, F., Khabir, A., Boujelbane, N., Sellami-Boudawara, T., Daoud, J., et al. (2010). Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. Journal of Cancer Research and Clinical Oncology, 136(2), 203–210.PubMedCrossRefGoogle Scholar
  31. 31.
    Pirouzpanah, S., Taleban, F. A., Atri, M., Abadi, A. R., & Mehdipour, P. (2010). The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes and Control, 21(12), 2101–2111.PubMedCrossRefGoogle Scholar
  32. 32.
    Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30(7), 2489–2496.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Naushad, S. M., Prayaga, A., Digumarti, R. R., Gottumukkala, S. R., Kutala, V. K. (2011). Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) expression is epigenetically regulated by one-carbon metabolism in invasive duct cell carcinoma of breast. Molecular and Cellular Biochemistry, 361(1–2), 189–195.Google Scholar
  34. 34.
    Xue, W. J., Li, C., Zhou, X. J., Guan, H. G., Qin, L., Li, P., et al. (2008). RASSF1A expression inhibits the growth of hepatocellular carcinoma from Qidong County. Journal of Gastroenterology and Hepatology, 23(9), 1448–1458.PubMedCrossRefGoogle Scholar
  35. 35.
    Naushad, S. M., Reddy, C. A., Rupasree, Y., Pavani, A., Digumarti, R. R., Gottumukkala, S. R., Kuppusamy, P., Kutala, V. K. (2011). Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochemistry and Biophysics, 61(3), 715–723.Google Scholar
  36. 36.
    Mirza, S., Sharma, G., Prasad, C. P., Parshad, R., Srivastava, A., Gupta, S. D., et al. (2007). Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sciences, 81, 280–287.PubMedCrossRefGoogle Scholar
  37. 37.
    Moscow, J. A., Gong, M., He, R., Sgagias, M. K., Dixon, K. H., Anzick, S. L., et al. (1995). Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Research, 55(17), 3790–3794.PubMedGoogle Scholar
  38. 38.
    Kokkinakis, D. M., Liu, X., & Neuner, R. D. (2005). Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): Implications to the therapy of pancreatic adenocarcinoma. Molecular Cancer Therapeutics, 4(9), 1338–1348.PubMedCrossRefGoogle Scholar
  39. 39.
    Worm, J., Kirkin, A. F., Dzhandzhugazyan, K. N., & Guldberg, P. (2001). Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. Journal of Biological Chemistry, 276(43), 39990–40000.PubMedCrossRefGoogle Scholar
  40. 40.
    Cho, Y. H., Yazici, H., Wu, H. C., Terry, M. B., Gonzalez, K., Qu, M., et al. (2010). Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Research, 30(7), 2489–2496.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Widschwendter, M., Apostolidou, S., Raum, E., Rothenbacher, D., Fiegl, H., Menon, U., et al. (2008). Epigenotyping in peripheral blood cell DNA and breast cancer risk: A proof of principle study. PLoS ONE, 3(7), e2656.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Radpour, R., Barekati, Z., Kohler, C., Lv, Q., Bürki, N., Diesch, C., et al. (2011). Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS ONE, 6(1), e16080.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shaik Mohammad Naushad
    • 1
  • Cheruku Apoorva Reddy
    • 1
  • Konda Kumaraswami
    • 1
  • Shree Divyya
    • 1
  • Srigiridhar Kotamraju
    • 2
  • Suryanarayana Raju Gottumukkala
    • 3
  • Raghunadha Rao Digumarti
    • 4
  • Vijay Kumar Kutala
    • 1
    Email author
  1. 1.Department of Clinical Pharmacology and TherapeuticsNizam’s Institute of Medical Sciences (NIMS)HyderabadIndia
  2. 2.Center for Chemical BiologyIndian Institute of Chemical Technology (IICT)HyderabadIndia
  3. 3.Surgical OncologyNizam’s Institute of Medical Sciences (NIMS)HyderabadIndia
  4. 4.Medical OncologyNizam’s Institute of Medical Sciences (NIMS)HyderabadIndia

Personalised recommendations