Cell Biochemistry and Biophysics

, Volume 68, Issue 2, pp 321–334 | Cite as

Identification of Unknown Homeopathic Remedies by Delayed Luminescence

  • Karin Lenger
  • Rajendra P. Bajpai
  • Manfred Spielmann
Original Paper

Abstract

A quality control method of highly diluted and potentized homeopathic remedies is important for curing patients applying homeopathic therapy. Lenger detected photons in highly potentized homeopathic remedies by delayed luminescence. The photons of Argentum metallicum 100MK and Cantharis 100MK magnetically bound to their carrier substances ethanol or saccharose were separated by their resonating magnetic field of about 2.06 MHz. The photons of these 100MK potency levels and of their reference substances were determined to be standard values calculated by the B2-values of Bajpai’s equation derived from the Hamiltonian equation. The stability of ethanolic Argentum metallicum 100MK and Cantharis 100MK declined to 1/3 of their photons within a month in contrast to saccharose globules with Argentum metallicum 100MK having been stable during the period of these investigations for almost 1 year. Some remedies delivered as CMK potency had been proved to be ethanol. The testing amount of high ethanolic potencies is limited to 40 μl because 80 μl resulted in an attenuation of the photons; 40 μl equal 16 medicated saccharose globules. Six unknown homeopathic remedies could be identified as increasing potency levels of Argentum metallicum from 100MK to 1.000MK which indicates a calibration curve. The homeopathic factories having sent the unknown remedies confirmed the measurements. A quality control of homeopathic remedies is possible by comparing the different B2-values of the remedies and their carrier substances.

Keywords

Delayed luminescence Homeopathic remedy Degree of a homeopathic potency B2-coefficient Resonance frequencies of homeopathic remedies Quality control of homeopathic remedies 

References

  1. 1.
    Shang, A., Huwiler-Müntener, K., Nartey, L., Jüni, P., Dörig, S., Sterne, J., et al. (2005). Are the Clinical effects of homoeopathy placebo effects? Comparative study of placebo- Controlled trials of homoeopathy and allopathy. The Lancet, 366, 726–732.CrossRefGoogle Scholar
  2. 2.
    Bellavite, P., & Signorini, A. (1995). The emerging science of homeopathy: Complexity, biodynamics, and nanopharmacology. Berkely: North Atlantik Books.Google Scholar
  3. 3.
    Homöopathisches Arzneibuch HAB. (2009). (Ed) Stuttgart: Deutscher Apothekerverlag.Google Scholar
  4. 4.
    Gaier, H. (1991). Potentizing methods. Thorsons encyclopaedic dictionary of homeopathy (pp. 432–467). London: Thorsons Harper Collins.Google Scholar
  5. 5.
  6. 6.
    Witte, C. M., Bluth, H., Albrecht, T. E. R., Weißhuhn, S., Baumgartner, S., & Willich, S. N. (2007). The in vitro evidence for an effect of high homeopathic potencies. A systematic review of the literature. Complementary Therapies in Medicine, 15, 128–138.CrossRefGoogle Scholar
  7. 7.
    Frenkel, M. (2010). Homeopathy in cancer care. Alternative Therapies in Health and Medicine, 16(3), 12–16.PubMedGoogle Scholar
  8. 8.
    Mishra, N., Charan Muraleedharan, K Ch., Paranjpe, A. S., & Singh, H Ch. (2011). An exploratory study on scientific investigations in homeopathy using medical analyzer. Journal of Alternative and Complementary Medicine, 17(8), 705–710.CrossRefGoogle Scholar
  9. 9.
    Frenkel, M., Mishra, B., Sen, S., Yang, P., Pawlus Vence, L., Leblanc, A., et al. (2010). Cytotoxic effects of ultra-diluted remedies on breast cancer cells. International Journal of Oncology, 36, 395–403.PubMedGoogle Scholar
  10. 10.
    Wiegant, F., & Van Wijk, R. (2010). The similia principle: Results obtained in a cellular model System. Homeopathy, 99, 15–24.CrossRefGoogle Scholar
  11. 11.
    Malarczyk, E. (2007). Kinetic changes in the activity of HR-peroxidase induced by very low doses of phenol. International Journal of High Dilution Research, 23, 2–11.Google Scholar
  12. 12.
    Malarczyk, E., Kochmanska-Rdest, J., & Jarosz-Wilkolzka, A. (2009). Influence of very low doses of mediators on fungal laccase activity—nonlinearity beyond imagination. Nonlinear Biomedical Physics, 3, 10. doi:10.1186/1753-4631-3-10.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Harisch, G., & Dittmann, J. (1998). Unterschiedlicher Einfluß von cAMP-Potenzen und cAMP-Verdünnungen am Beispiel verschiedener Enzymsysteme. Biology and Medicine, 27(2), 55–62.Google Scholar
  14. 14.
    Wolf, U., Wolf, M., Heusser, P., Thurneysen, A., & Baumgartner, S. (2009). Homeopathic preparations of quartz, sulfur and copper sulfate assessed by UV-spectroscopy. Evidence-based Complementary and Alternative Medicine. doi:10.1093/ecam/nep036.Google Scholar
  15. 15.
    Jäger, T., Scherr, C., Simon, M., Heusser, P., & Baumgartner, S. (2010). Effects of homeopathic Arsenicum album, nosode, and gibberellic acid preparations on the growth rate of arsenic-impaired duckweed (Lemna gibba). The Scientific World Journal, 10, 2112–2129.CrossRefGoogle Scholar
  16. 16.
    Baumgartner, S., Thurneysen, A., & Heusser, P. (2004). Growth stimulation of Dwarf peas (Pisum sativum L.) through homeopathic potencies of plant growth substances. Forsch Komplimentärmed Klass Naturheilk., 11, 281–292.CrossRefGoogle Scholar
  17. 17.
    Elia, V., Baiano, S., Duro, I., Napoli, E., Niccoli, M., & Nonatelli, L. (2004). Permanent physico-chemical properties of extremely diluted aqueous solutions of homeopathic medicine. Homeopathy, 93, 144.PubMedCrossRefGoogle Scholar
  18. 18.
    Elia, V., Elia, L., Cacace, P., Napoli, E., Niccoli, M., & Savarese, F. (2006). ‘Extremely diluted solutions’ as multi-variable systems. A study of calorimetric and conductometric behaviour as a of the parameter time. Journal of Thermal Analysis and Calorimetry, 84, 317–323. doi:10.1007/s10973-005-7266-7.CrossRefGoogle Scholar
  19. 19.
    Glenn, R. (1992). Storage of non-Hertzian frequency information in water. In S. Elswick (Ed.), Proceedings of the International Tesla Society (pp. 1–17). Colorado Springs: International Tesla Society.Google Scholar
  20. 20.
    Tschulakov, A. V., Yan, Y., & Klimek, W. (2005). A new approach to the memory of water. Homeopathy, 94, 241–247.CrossRefGoogle Scholar
  21. 21.
    Popp, F. A. (1998). Hypothesis of modes of action of homeopathy: Theoretical background and the experimental situation. In P. Heusser (Ed.), Energetische Medizin: Gibt es nur physikalische Wirkprinzipien? (pp. 101–110). Lange Peter: Bern.Google Scholar
  22. 22.
    Popp, F. A. (1998). Hypothesis of modes of action of homeopathy: Theoretical background and the experimental situation. In E. Ernst & E. G. Hahn (Eds.), Homeopathy: A critical appraisal (pp. 145–152). London: Butterworth-Heinemann.Google Scholar
  23. 23.
    Schiff, M. (1995). The memory of water. Homeopathy and the battle of ideas in the new science. New York: Harper Collins publishers.Google Scholar
  24. 24.
    Schiff, M. (1997). Das Gedächtnis des Wassers. Frankfurt am Main: Zweitausendeins.Google Scholar
  25. 25.
    Bischof, M. (1995). Biophotonen, Das Licht in unseren Zellen. Frankfurt: Verlag Zweitausendeins.Google Scholar
  26. 26.
    Popp FA (1999) Der Weg eines Physikers zum Licht. Fritz-Albert Popp im Gespräch mit Mathias Brockers. In F. A. Popp (Ed.) Die Botschaft der Nahrung (pp. VII–L). Frankfurt: Verlag Zweitausendeins.Google Scholar
  27. 27.
    Lenger, K., Bajpai, R. P., & Drexel M, R. P. (2008). Delayed luminescence of high homeopathic potencies on sugar globuli. Homeopathy, 97(3), 134–140.PubMedCrossRefGoogle Scholar
  28. 28.
    Lenger, K. (2006). Homeopathic potencies identified by a new magnetic resonance method. Subtle Energies & Energy Medicine, 15(3), 225–243.Google Scholar
  29. 29.
    Bajpai, R. P., Kumar S, S., & Sivadasan, V. A. (1998). Biophoton Emission in the evolution of a squeezed state of frequency stable damped oscillator. Applied Mathematics and Computation, 93, 277–288.CrossRefGoogle Scholar
  30. 30.
    Bajpai, R. P. (2007). Quantum squeezed state description of spectral decompositions of a biophoton signal and the possibility of remote intervention. In V. L. Belussov, V. S. Voeikov, & V. S. Mortynyuk (Eds.), Biophotonics and coherent systems in biology (pp. 33–46). New York: Springer.Google Scholar
  31. 31.
    Bajpai, R. P. (2005). Parameters characterizing spontaneous biophoton signal as a squeezed state in a sample of Paramelia Tinctorum. In X. Shen & R. vanWijk (Eds.) Biophotonics (pp. 125–140). New York: Springer.Google Scholar
  32. 32.
    Van Wijk, R., & Van Wijk, E. P. A. (2005). An introduction to human biophoton emission. Research in Complementary and Natural Classical Medicine, 12, 77–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Wijk, E. P. A., & Van Wijk, R. (2005). Multi-site recording and spectral analysis of spontaneous photon emission from human body. Forsch Komplementärmed Klass Naturheilkd, 12, 96–106.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Wijk, R., van Wijk, E. P. A., & Bajpai, R. P. (2008). Quantum squeezed state analysis of spontaneous ultra weak light photon emission of practitioners of meditation and control subjects. Indian Journal of Experimental Biology, 46, 345–352.PubMedGoogle Scholar
  35. 35.
    Van Wijk, R., Kobayashi, M., & van Wijk, E. P. A. (2006). Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. Journal of Photochemistry and Photobiology B: Biology, 83, 69–76.CrossRefGoogle Scholar
  36. 36.
    Van Wijk, R., van Wijk, E. P. A., & Bajpai, R. P. (2006). Photon count distribution of photons emitted from three sites of a human body. Journal of Photochemistry and Photobiology B: Biology, 84, 46–55.CrossRefGoogle Scholar
  37. 37.
    Cifra, M., van Wijk, E. P. A., Koch, H., Bosman, S., & van Wijk, R. (2007). Spontaneous ultra- weak photon emission from human hands is time dependent. Radioengineering, 16(2), 15–19.Google Scholar
  38. 38.
    Musumeci, F., Applegate, L. A., Privitera, G., Scordina, A., Tudisco, S., & Niggli, H. J. (2005). Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: Temperature dependence. Journal of Photochemistry and Photobiology B: Biology, 79, 93–99.CrossRefGoogle Scholar
  39. 39.
    De Alvarenga, E. S., Marques de Oliveira, A. P., da Silva, R. T. B., & Casali, V. W. D. (2009). Effect of magnesium phosphoricum 12c on sodium dodecylsulphate by 13C nuclear magnetic resonance. International Journal of High Dilution Research, 8(26), 3–8.Google Scholar
  40. 40.
    Anick, D. J. (2004). High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water. BMC Complementary and Alternative Medicine, 1–15. http://www.biomedcentral.com/1472-6882/4/15.
  41. 41.
    Aabel, S., Fossheim, S., & Rise, F. (2001). Nuclear magnetic resonance (NMR) studies of homeopathic solutions. Br Homeopath J, 90, 14–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Ives, J. A., Moffet, J. R., Arun, P., Lam, D., Todorov, T. I., Brothers, A. B., et al. (2010). Enzyme stabilization by glass derived silicates in glass-exposed aqueous solutions. Homeopathy, 99, 15–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Botha, I., & Ross, H. A. (2008). A nuclear magnetic resonance spectroscopy comparison of 3C trituration derived and 4C triturations derived remedies. Homeopathy, 97, 196–201.PubMedCrossRefGoogle Scholar
  44. 44.
    Rey, L. (2003). Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A, 323, 67–74.CrossRefGoogle Scholar
  45. 45.
    Molski, M. (2011). Quasi-quantum model of potentization. Homeopathy, 100, 259–263.PubMedCrossRefGoogle Scholar
  46. 46.
    Molski, M. (2012). Fractal time of life. KG, Saarbrücken: LAP LAMBERT Academic Publishing GmbH& Co.Google Scholar
  47. 47.
    Smith, C. W. (2003). Effects of electromagnetic fields in the living environment. In D. Clements-Croome (Ed.) Proceeding of International Conference. “Electromagnetic Environments & Health in Buildings”, 16–17 May 2002 Royal College of Physicians (pp. 53–118), London: Taylor & Francis.Google Scholar
  48. 48.
    Pokorny, J., Hasek, J., Vanis, J., & Jelinek, J. (2008). Biophysical aspects of cancer- electromagnetic mechanism. Indian Journal of Experimental Biology, 46, 310–321.PubMedGoogle Scholar
  49. 49.
    Cifra, M., Fields, J. Z., & Farhadi, A. (2011). Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology, 105, 223–246.PubMedCrossRefGoogle Scholar
  50. 50.
    Liboff, A. R., Cheng, S., Jerow, K. A., & Bull, A. (2003). Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 mT magnetostatic fields. Bioelectromagnetics, 24, 32–38.PubMedCrossRefGoogle Scholar
  51. 51.
    Shaya, S. Y., & Smith, C. W. (1977). The effects of magnetic and radiofrequency fields on the activity of lysozyme. Collective phenomena, 2, 215–218.Google Scholar
  52. 52.
    Lisi, A., Foletti, A., Ledda, M., Rosola, M., Giuliani, E. L., D`Emilia, E., et al. (2006). Extremly low frequency 7 Hz 100μT electromagnetic radiation promotes differentiation in the human epitelial cell line HaCaT. Electromagnetic Biology and Medicine, 25, 269–280.PubMedCrossRefGoogle Scholar
  53. 53.
    Pozzi, D., Grimaldi, S., Ledda, M., De Carlo, F., Modesti, A., Scarpa, S., et al. (2007). Effect of 50 Hz magnetic field response on Neusoblastoma morphology. IJIB, 1(1), 12–17.Google Scholar
  54. 54.
    Lenger, K. (2010). A new biochemical model of homeopathic efficacy in patients with chronic diseases. Subtle Energies & Energy Medicine, 19(3), 1–34.Google Scholar
  55. 55.
    Lenger, K. (2010). Evidence and Efficacy of photons detected in homeopathic remedies. 65th Congress of the LMHI, A Homeopathic Odyssey: 200th Anniversary of the Organon, May 19–22, 2010, Redondo Beach, California.Google Scholar
  56. 56.
    Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluorescenz. Annalen der Physik, 2, 57–75.Google Scholar
  57. 57.
    SantosoY, Joyce C, Potapova, O. J., Le Reste, L., Hohlbein, Torella J P, Grindley, N., & Kapanidis, A. N. (2010). Conformational changes in DNA polymerase I revealed by single-molecule FRET. Proceedings of the National Academy of Sciences, 107, 715–720.CrossRefGoogle Scholar
  58. 58.
    Diez, M., Zimmermann, B., Börsch, M., Schweinberger, E., Steigmiller, S., Reuter, R., et al. (2004). Proton-powered subunit rotation in single membrane-bound F0 F1-ATP synthase. Nature Structural & Molecular Biology, 11, 135–141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Karin Lenger
    • 1
  • Rajendra P. Bajpai
    • 2
    • 3
  • Manfred Spielmann
    • 1
  1. 1.Institute for Scientific HomeopathyOffenbachGermany
  2. 2.International Institute for BiophysicsNeussGermany
  3. 3.North Eastern Hill UniversityShillongIndia

Personalised recommendations