Advertisement

Cell Biochemistry and Biophysics

, Volume 68, Issue 2, pp 267–274 | Cite as

Vitreous Humor Rheology After Nd:YAG Laser Photo Disruption

  • Salwa A. AbdelkawiEmail author
  • Ahmed M. Abdel-Salam
  • Dina F. Ghoniem
  • Sally K. Ghaly
Original Paper

Abstract

This work aimed to consider the hazardous side effect of eye floaters treatment with Q-switched Nd:YAG laser on the protein and viscoelastic properties of the vitreous humor, and evaluate the protective role of vitamin C against laser photo disruption. Five groups of New Zealand rabbits were divided as follows: control group for (n = 3) without any treatment, the second group (n = 9) treated with Q-switched Nd:YAG laser energy of 5 mJ × 100 pulse delivered to the anterior, middle, and posterior vitreous, respectively (n = 3 for each). The third group (n = 9) received a daily dose of 25 mg/kg body weight vitamin C for 2 weeks, and then treated with laser as the previous group. The fourth group (n = 9) treated with 10 mJ × 50 pulse delivered to the anterior, middle, and posterior vitreous, respectively (n = 3 rabbits each). The fifth group (n = 9) received a daily dose of 25 mg/kg body weight vitamin C for 2 weeks, and then treated with laser as the previous group. After 2 weeks of laser treatment, the protein content, refractive index (RI), and the rheological properties of vitreous humor, such as consistency, shear stress, and viscosity, were determined. The results showed that, the anterior vitreous group exposed to of 5 mJ × 100 pulse and/or supplemented with vitamin C, showed no obvious change. Furthermore, all other treated groups especially for mid-vitreous and posterior vitreous humor showed increase in the protein content, RI and the viscosity of vitreous humor. The flow index remained below unity indicating the non-Newtonian behavior of the vitreous humor. Application of Q-switched Nd:YAG laser should be restricted to the anterior vitreous humor to prevent the deleterious effect of laser on the gel state of the vitreous humor.

Keywords

Consistency Flow index Refractive index Total protein Viscosity Vitamin C 

Notes

Acknowledgments

The authors would like to express great appreciation to Prof. Dr. DesouKi O S (Biophysics lab, Radiation physics Dep., National Center for Radiation Research and Technology) for his kind collaboration and scientific advices in preparation of this work.

References

  1. 1.
    Gloor, B. P. (1981). The vitreous. In R. A. Moses (Ed.), Adler’s physiology of the eye (7th ed., pp. 215–223). St. Louis: C.V. Mosby Co.Google Scholar
  2. 2.
    Vandorselaer, T., Van De Veldi, F., & Tassignon, M. J. (2001). Eligibility criteria for Nd–YAG laser treatment of highly symptomatic vitreous floaters. Bulletin of the Belgian Socieities of Ophthalmologie, 280, 15–19.Google Scholar
  3. 3.
    Tagger, J. D., Hamilito, O. P., & Polkinghor, N. P. (1990). Q-switched neodymium YAG laser vitrolysis in the therapy of posterior segment disease. Graefes Archive for Clinical and Experimental Ophthalmology, 228, 222–225.CrossRefGoogle Scholar
  4. 4.
    Vogel, A., Hentschel, W., Holzfuss, J., & Luetrborn, W. (1996). Cavitations bubble dynamics and acoustic transient generation in ocular surgery with pulsed Neodymium:YAG laser. Ophthalmology, 93, 1259–1269.CrossRefGoogle Scholar
  5. 5.
    Tackano, S., Ishiwata, S., Nakazawa, M., et al. (1997). Determination of ascorbic acid in human vitreous humor by high performance liquid chromatography with UV detection. Current Eye Research, 16, 589–594.CrossRefGoogle Scholar
  6. 6.
    Peponis, V., Papathanassiou, M., Kapranou, A., et al. (2002). Protective role of oral antioxidant supplementation in ocular surface of diabetic patient. British Journal of Ophthalmology, 86, 1369–1373.PubMedCrossRefGoogle Scholar
  7. 7.
    Steinert, R. F., & Puliafito, C. A. (1985). Laser in ophthalmology: Principles and clinical applications of photo disruption (pp. 22–35). Philadelphia: WB Saunders Co.Google Scholar
  8. 8.
    Krauss, J. M., Puliafito, C. A., Miglior, S., et al. (1986). Vitreous changes after Neodymium–YAG laser photo disruption. Archives of Ophthalmology, 104, 592–597.PubMedCrossRefGoogle Scholar
  9. 9.
    Puliafito, C. A., Wasson, P. J., Steinert, R. F., et al. (1984). Neodymium–YAG laser surgery on experimental vitreous membrane. Archives of Ophthalmology, 102, 843–847.PubMedCrossRefGoogle Scholar
  10. 10.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  11. 11.
    Snedecore, G. W., & Cochran, W. G. (1976). Statistical methods (6th ed.). Ames, IA: Iowa State University Press.Google Scholar
  12. 12.
    Chirila, I. V., Hong, Y. E., Dalton, P. D., et al. (1998). The use of hydrophilic polymer as artificial vitreous. Progress in Polymer Science, 23, 475–508.CrossRefGoogle Scholar
  13. 13.
    Suri, S., & Banerjee, R. (2006). Biophysical evaluation of vitreous humor, its constituents and substitutes. Trends in Biomaterials & Artificial Organs, 20, 72–77.Google Scholar
  14. 14.
    Neveh, N., & Weissman, C. (1990). The correlation between excessive vitreal protein levels, prostaglandins E2 levels and the blood retinal barrier. Prostaglandins, 39, 147–156.CrossRefGoogle Scholar
  15. 15.
    Nasisse, M. P., Mc Gahan, M. C., Shields, M. B., et al. (1992). Inflammatory effects of contentious wave Neodymium:Yttrium Aluminum garnet laser cyclophotocoagulation. Investigative Ophthalmology & Visual Science, 33, 2216–2223.Google Scholar
  16. 16.
    Peyman, G. A., & Sanders, D. R. (1980). Vitreous and vitreous surgery. In G. A. Peyman, D. R. Sanders, & M. F. Goldberg (Eds.), Principles and practice of ophthalmology (Vol. 2, pp. 1327–1401). Philadelphia: WB Saunders Co.Google Scholar
  17. 17.
    Schepens, C. L. (1983). Retinal detachment an allied diseases (Vol. 1, pp. 23–28). Philadelphia: WB Saunders Co.Google Scholar
  18. 18.
    Moorhead, L. C., Redburn, D. A., Kirkpatrick, D. S., et al. (1980). Bacterial collagenase: Proposed adjunct to vitroctomy with membranectomy. Archives of Ophthalmology, 98, 1829–1839.PubMedCrossRefGoogle Scholar
  19. 19.
    Donn, A. (1955). Ultrasonic wave liquefaction of vitreous humor in living rabbits. Archives of Ophthalmology, 53, 215–223.PubMedCrossRefGoogle Scholar
  20. 20.
    Keates, R. H., Steinert, R. F., Puliafito, C. A., et al. (1984). Long-term follow-up of Nd:YAG laser posterior capsulotomy. Journal of American Intra-Ocular Implant Society, 10, 164–168.CrossRefGoogle Scholar
  21. 21.
    Leyton, L. (1975). Fluid behavior in biological system (pp. 160–163). Oxford: Clarendon Press/Oxford University Press.Google Scholar
  22. 22.
    Matrai, A., Whittington, R. B., & Skalak, R. (1987). Biophysics. In S. D. J. Chien, E. Ernst, et al. (Eds.), Clinical hemorheology (pp. 9–71). Dordrecht: Martimus Nijhoff.CrossRefGoogle Scholar
  23. 23.
    Lowe, G. D. O., & Barbane, J. C. L. (1988). Plasma and blood viscosity. In G. D. O. Lowe (Ed.), Clinical blood rheology (Vol. 1, pp. 1–10). Boca Raton: CRC Press.Google Scholar
  24. 24.
    Lerman, S., Thrasher, B., & Moran, M. (1984). Vitreous changes after Neodymium–YAG laser irradiation of the posterior lens capsule or mid-vitreous. American Journal of Ophthalmology, 97, 470–475.PubMedGoogle Scholar
  25. 25.
    Garland, D. L. (1991). Ascorbic acid and the eye. American Journal of Clinical Nutrition, 54, 1198S–1202S.PubMedGoogle Scholar
  26. 26.
    Rose, R. C., Richer, S. P., & Bode, A. M. (1998). Ocular oxidants and antioxidant protection. Proceedings of the Society for Experimental Biology and Medicine, 217, 397–407.PubMedCrossRefGoogle Scholar
  27. 27.
    Pirie, A. (1965). A light-catalyzed reaction in the aqueous humor of the eye. Nature, 205, 500–501.PubMedCrossRefGoogle Scholar
  28. 28.
    Eaton, J. W. (1991). Is the lens canned? Free Radical Biology and Medicine, 11, 207–213.PubMedCrossRefGoogle Scholar
  29. 29.
    Spector, A., Ma, W., & Wang, R. R. (1998). The aqueous humor is capable of generating and degrading H2O2. Investigative Ophthalmology & Visual Science, 39, 1188–1197.Google Scholar
  30. 30.
    Shui, Y., Holekamp, N. M., Kramer, B. C., et al. (2009). The Gel state of the vitreous and ascorbate-dependent oxygen consumption relationship to the etiology of nuclear cataracts. Archives of Ophthalmology, 127, 475–482.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Glickman, R. D., & Lam, K. W. (1992). Oxidation of ascorbic acid as an indicator of photooxidative stress in the eye. Photochemistry and Photobiology, 55(2), 191–196.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoyanavsky, D. A., Goldman, R., Darrow, R. M., et al. (1995). Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Current Eye Research, 14(3), 181–189.CrossRefGoogle Scholar
  33. 33.
    Winkler, B. S., Orselli, S. M., & Rex, T. S. (1994). The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radical Biology and Medicine, 17(4), 333–349.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Salwa A. Abdelkawi
    • 1
    Email author
  • Ahmed M. Abdel-Salam
    • 2
  • Dina F. Ghoniem
    • 2
  • Sally K. Ghaly
    • 2
  1. 1.Biophysics and Laser Science UnitResearch Institute of OphthalmologyGizaEgypt
  2. 2.Medical Application of Laser DepartmentNational Institute for Laser Enhanced ScienceGizaEgypt

Personalised recommendations