Computational SNP Analysis: Current Approaches and Future Prospects

Abstract

The computational approaches in determining disease-associated Non-synonymous single nucleotide polymorphisms (nsSNPs) have evolved very rapidly. Large number of deleterious and disease-associated nsSNP detection tools have been developed in last decade showing high prediction reliability. Despite of all these highly efficient tools, we still lack the accuracy level in determining the genotype–phenotype association of predicted nsSNPs. Furthermore, there are enormous questions that are yet to be computationally compiled before we might talk about the prediction accuracy. Earlier we have incorporated molecular dynamics simulation approaches to foster the accuracy level of computational nsSNP analysis roadmap, which further helped us to determine the changes in the protein phenotype associated with the computationally predicted disease-associated mutation. Here we have discussed on the present scenario of computational nsSNP characterization technique and some of the questions that are crucial for the proper understanding of pathogenicity level for any disease associated mutations.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

nsSNP:

Non-synonymous single nucleotide polymorphism

MDS:

Molecular dynamics simulation

ED:

Essential dynamics

References

  1. 1.

    Mooney, S. (2005). Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Briefings in Bioinformatics, 6, 44–56.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Cargill, M., et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 22, 231–238.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Halushka, M. K., et al. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics, 22, 239–247.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Terp, B. N., et al. (2002). Assessing the relative importance of the biophysical properties of amino acid substitutions associated with human genetic disease. Human Mutation, 20, 98–109.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Vitkup, D., Sander, C., & Church, G. M. (2003). The amino-acid mutational spectrum of human genetic disease. Genome Biology, 4, R72.

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Ferrer-Costa, C., Orozco, M., & de la Cruz, X. (2002). Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. Journal of Molecular Biology, 315, 771–786.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Stitziel, N. O., et al. (2003). Structural location of disease-associated single-nucleotide polymorphisms. Journal of Molecular Biology, 327, 1021–1030.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Mooney, S. D., & Klein, T. E. (2002). The functional importance of disease-associated mutation. BMC Bioinformatics, 3, 24.

    PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Saunders, C. T., & Baker, D. (2002). Evaluation of structural and evolutionary contributions to deleterious mutation prediction. Journal of Molecular Biology, 322, 891–901.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Krishnan, V. G., & Westhead, D. R. (2003). A comparative study of machine-learning methods to predict the effects of single nucleotide polymorphisms on protein function. Bioinformatics, 19, 2199–2209.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Watkins, et al. (2001). Hypertrophic cardiomyopathy: From molecular and genetic mechanisms to clinical management. European Heart Journal, 3, L43–L50.

    Article  Google Scholar 

  12. 12.

    Kumar, A., & Purohit, R. (2012). Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene, 503, 75–82.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kumar, A., & Purohit, R. (2012). Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutation Research, 738–739, 28–37.

    PubMed  Article  Google Scholar 

  14. 14.

    Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2012). In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ). FEBS Open Bio, 2, 285–293.

    PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    Purohit, R., (2013). Role of ELA region in auto-activation of mutant KIT receptor; a molecular dynamics simulation insight. Journal of biomolecular structure & dynamics. doi:10.1080/07391102.2013.803264.

  16. 16.

    Wu, Q., Ye, Y., Liu, Y., & Ng, M. K. (2012). SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Transactions on Nanobioscience, 11, 216–227.

    PubMed  Article  Google Scholar 

  17. 17.

    Masoodi, T. A., Rao Talluri, V., Shaik, N. A., Al-Aama, J. Y., & Hasan, Q. (2012). Functional genomics based prioritization of potential nsSNPs in EPHX1, GSTT1, GSTM1 and GSTP1 genes for breast cancer susceptibility studies. Genomics, 99, 330–339.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Masoodi, T. A., Al Shammari, S. A., Al-Muammar, M. N., & Alhamdan, A. A. (2012). Exploration of deleterious single nucleotide polymorphisms in late-onset Alzheimer disease susceptibility genes. Gene, 512(2), 429–437.

    PubMed  Article  Google Scholar 

  19. 19.

    Hussain, M. R., et al. (2012). In silico analysis of single nucleotide polymorphisms (SNPs) in human BRAF gene. Gene, 508, 188–196.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Thomas, P. D., et al. (2003). PANTHER: A browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Research, 31, 334–341.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Wang, Z., & Moult, J. (2001). SNPs, protein structure, and disease. Human Mutation, 17, 263–270.

    PubMed  Article  Google Scholar 

  22. 22.

    Bromberg, Y., Yachdav, G., & Rost, B. (2008). SNAP predicts effect of mutations on protein function. Bioinformatics, 24, 2397–2398.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30, 1237–1244.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Capriotti, E., Fariselli, P., & Casadio, R. (2004). A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics, 20, I63–I68.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33, W306–W310.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Capriotti, E., Fariselli, P., Calabrese, R., & Casadio, R. (2005). Predicting protein stability changes from sequences using support vector machines. Bioinformatics, 21, ii54–ii58.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22, 2729–2734.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Capriotti, E., Arbiza, L., Casadio, R., Dopazo, J., Dopazo, H., & Marti-Renom, M. A. (2008). Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans. Human Mutation, 29, 198–204.

    PubMed  Article  Google Scholar 

  29. 29.

    Capriotti, E., Fariselli, P., Rossi, I., & Casadio, R. (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 9(Suppl 2), S6.

    PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Capriotti, E., & Altman, R. B. (2011). A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics, 98, 310–317.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. 31.

    Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. Journal of Molecular Biology, 320, 369–387.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Karchin, R., Diekhans, M., Kelly, L., Thomas, D. J., Pieper, U., Eswar, N., et al. (2005). LS-SNP: Large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics, 21, 2814–2820.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Li, B., Krishnan, V. G., Mort, M. E., Xin, F., Kamati, K. K., Cooper, D. N., et al. (2009). Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics, 25, 2744–2750.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 11, 863–874.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30, 3894–3900.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Wainreb, G., et al. (2010). MuD: An interactive web server for the prediction of non-neutral substitutions using protein structural data. Nucleic Acids Research, 38, W523–W528.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Ye, Z. Q., Zhao, S. Q., Gao, G., Liu, X. Q., Langlois, R. E., Lu, H., et al. (2007). Finding new structural and sequence attributes to predict possible disease association of single amino acid polymorphism (SAP). Bioinformatics, 23, 1444–1450.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34, W239–W242.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Zhou, H., & Zhou, Y. (2002). Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Science, 11, 2714–2726.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Bao, L., Zhou, M., & Cui, Y. (2005). nsSNPAnalyzer: Identifying disease-associated non-synonymous single nucleotide polymorphisms. Nucleic Acids Research, 33, W480–W482.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Ferrer-Costa, C., Gelpı, J. L., Zamakola, L., Parraga, I., de la Cruz, X., & Orozco, M. (2005). PMUT: A web-based tool for the annotation of pathological mutations on proteins. Bioinformatics, 21, 3176–3178.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    De Baets, G., et al. (2012). SNPeffect 4.0: On-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Research, 40, D935–D939.

    PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Kaminker, J. S., Zhang, Y., Watanabe, C., & Zhang, Z. (2007). CanPredict: A computational tool for predicting cancer-associated missense mutations. Nucleic Acids Research, 35, W595–W598.

    PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Thusberg, J., Olatubosun, A., & Vihinen, M. (2011). Performance of mutation pathogenicity prediction methods on missense variants. Human Mutation, 32, 358–368.

    PubMed  Article  Google Scholar 

  45. 45.

    Huang, T., et al. (2010). Prediction of deleterious non-synonymous SNPs based on protein interaction network and hybrid properties. PLoS ONE, 5, e11900.

    PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Ashburner, M., et al. (2000). Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25–29.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. 47.

    Ishikawa, H., Kwak, K., Chung, J. K., Kim, S., & Fayer, M. D. (2008). Direct observation of fast protein conformational switching. Proceedings of the National Academy of Sciences of the United States of America, 105, 8619–8624.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Purohit, R., & Sethumadhavan, R. (2009). Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdisciplinary Science, 1, 320–328.

    CAS  Article  Google Scholar 

  49. 49.

    Rajendran, V., & Sethumadhavan, R. (2013). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2012.759885.

  50. 50.

    Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: An in silico analysis. Journal of Molecular Modeling, 17, 869–877.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. Journal of Biomolecular Structure and Dynamics, 29, 137–152.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy cause by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43, 603–615.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Balu, K., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Investigation of binding phenomenon of NSP3 and p130Cas mutants and their effect on cell signalling. Cell Biochemistry and Biophysics. doi:10.1007/s12013-013-9551-6.

    PubMed  Google Scholar 

  54. 54.

    Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Evidence of colorectal cancer-associated mutation in MCAK: A computational report. Cell Biochemistry and Biophysics. doi:10.1007/s12013-013-9572-1.

    Google Scholar 

  55. 55.

    Kumar, A., & Purohit, R. (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 Pleckstrin Homology (PH) domain. PLoS ONE, 8(5), e64364.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. 56.

    Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Computational investigation of cancer-associated molecular mechanism in Aurora A (S155R) mutation. Cell Biochemistry and Biophysics. doi:10.1007/s12013-013-9524-9.

    Google Scholar 

  57. 57.

    Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2013.770373.

    Google Scholar 

  58. 58.

    K, B., & Purohit, R. (2013). Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513(1), 184–195.

    Google Scholar 

Download references

Acknowledgments

We (AK, VR, RS & RP) gratefully acknowledge the management of Vellore Institute of Technology University for providing the facilities to carry out this work. PS acknowledges financial support by the Austrian Science Fund (FWF, Grant SFB-28). All authors thank the anonymous reviewers for their helpful comments and critical reading of the manuscript.

Conflict of interest

Authors have no potential conflict of interest to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rituraj Purohit.

Additional information

Ambuj Kumar and Vidya Rajendran are the joint first authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, A., Rajendran, V., Sethumadhavan, R. et al. Computational SNP Analysis: Current Approaches and Future Prospects. Cell Biochem Biophys 68, 233–239 (2014). https://doi.org/10.1007/s12013-013-9705-6

Download citation

Keywords

  • nsSNPs
  • Onco-allele
  • Oncogene
  • Molecular dynamics simulation