Skip to main content

Advertisement

Log in

Inactivation of HDAC3 and STAT3 is Critically Involved in 1-Stearoyl-sn-Glycero-3-Phosphocholine-Induced Apoptosis in Chronic Myelogenous Leukemia K562 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We here investigated the anticancer mechanism of 1-stearoyl-sn-glycero-3-phosphocholine (LPC), one of the lysophosphatidylcholines, in chronic myelogenous leukemia (CML) K562 cells. LPC significantly showed cytotoxicity at 80 μM and induced apoptosis by sub-G1 accumulation, increase in Annexin V positive and caspase activation. LPC enhanced histone H3 acetylation but decreased histone deacetylase (HDAC) activity and HDAC3 expression. LPC also inhibited phosphorylation of STAT3, its DNA binding activity and nuclear co-localization of HDAC3 and STAT3. In addition, LPC effectively attenuated the expression of survival genes such as Cyclin D1, Cyclin E, Bcl-xL, Bcl-2 and survivin but did not affect COX-2 expression in K562 cells. Furthermore, LPC suppressed phosphorylation of Src and Janus activated kinase 2 while promoted the expression of tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1). Consistently, silencing SHP-1 and pervanadate, an inhibitor of protein tyrosine phosphatase, reversed inactivation of HDAC and STAT3, cleavages of caspase 3 and poly (ADP-ribose) polymerase in LPC-induced apoptosis. Of note, chromatin immunoprecipitation assay revealed that LPC suppressed the binding of HDAC3 and STAT3 to Bcl-xL, Bcl-2 and survivin promoter. Overall, our findings indicate that inactivation of STAT3 and HDAC mediates LPC-induced apoptosis in CML K562 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad, A., Sakr, W. A., & Rahman, K. M. (2012). Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience (Elite Edition), 4, 410–425.

    Google Scholar 

  2. Lin, Y. C., Lin, J. H., Chou, C. W., Chang, Y. F., Yeh, S. H., & Chen, C. C. (2008). Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Research, 68(7), 2375–2383.

    Article  PubMed  CAS  Google Scholar 

  3. Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 107(4), 600–608.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Gupta, S. R., Tharakan, S. T., Koca, C., et al. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Annals of the New York Academy Sciences, 1171, 59–76.

    Article  CAS  Google Scholar 

  5. Pandey, M. K., Sung, B., & Aggarwal, B. B. (2010). Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. International Journal of Cancer, 127(2), 82–292.

    Google Scholar 

  6. Kakisaka, K., Cazanave, S. C., Fingas, C. D., Guicciardi, M. E., Bronk, S. F., Werneburg, N. W., et al. (2012). Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302(1), G77–G84.

    Article  PubMed  CAS  Google Scholar 

  7. Jantscheff, P., Schlesinger, M., Fritzsche, J., Taylor, L. A., Graeser, R., Kirfel, G., et al. (2011). Lysophosphatidylcholine pretreatment reduces VLA-4 and P-selectin-mediated b16.f10 melanoma cell adhesion in vitro and inhibits metastasis-like lung invasion in vivo. Molecular Cancer Therapeutics, 10(1), 186–197.

    Article  PubMed  CAS  Google Scholar 

  8. Gaetano, C. G., Samadi, N., Tomsig, J. L., Macdonald, T. L., Lynch, K. R., & Brindley, D. N. (2009). Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Molecular Carcinogenesis, 48(9), 801–809.

    Article  PubMed  CAS  Google Scholar 

  9. Park, S., Kim, J. A., Choi, S., & Suh, S. H. (2010). Superoxide is a potential culprit of caspase-3 dependent endothelial cell death induced by lysophosphatidylcholine. Journal of Physiology and Pharmacology, 61(4), 375–381.

    PubMed  CAS  Google Scholar 

  10. Gwak, G. Y., Yoon, J. H., Lee, S. H., Lee, S. M., Lee, H. S., & Gores, G. J. (2006). Lysophosphatidylcholine suppresses apoptotic cell death by inducing cyclooxygenase-2 expression via a Raf-1 dependent mechanism in human cholangiocytes. Journal of Cancer Research and Clinical Oncology, 132(12), 771–779.

    Article  PubMed  CAS  Google Scholar 

  11. Taylor, L. A., Arends, J., Hodina, A. K., Unger, C., & Massing, U. (2007). Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Disease, 6, 17.

    Article  Google Scholar 

  12. Schick, H. D., Berdel, W. E., Fromm, M., Fink, U., Jehn, U., Ulm, K., et al. (1987). Cytotoxic effects of ether lipids and derivatives in human nonneoplastic bone marrow cells and leukemic cells in vitro. Lipids, 22(11), 904–910.

    Article  PubMed  CAS  Google Scholar 

  13. Jimeno, M. L., Valverde, S., Błaszczak, W., Fornal, J., & Amarowicz, R. (2002). 13C and 1H NMR study of lysophosphatidylcholine (LPC) isolated from the surface of wheat starch granules. Food Science and Technology International, 8(3), 179–183.

    CAS  Google Scholar 

  14. Won, S. H., Lee, H. J., Jeong, S. J., Lu, J., & Kim, S. H. (2011). Activation of p53 signaling and inhibition of androgen receptor mediate tanshinone IIA induced G1 arrest in LNCaP prostate cancer cells. Phytotherapy Research, 26(5), 669–674.

    Article  PubMed  Google Scholar 

  15. Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene, 26(37), 5541–5552.

    Article  PubMed  CAS  Google Scholar 

  16. Yang, X. J., & Seto, E. (2007). HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention. Oncogene, 26(37), 5310–5318.

    Article  PubMed  CAS  Google Scholar 

  17. Benekli, M., Baumann, H., & Wetzler, M. (2009). Targeting signal transducer and activator of transcription signaling pathway in leukemias. Journal of Clinical Oncology, 27(26), 4422–4432.

    Article  PubMed  CAS  Google Scholar 

  18. Tsui, F. W., Martin, A., Wang, J., & Tsui, H. W. (2006). Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunologic Research, 35(1–2), 127–136.

    Article  PubMed  CAS  Google Scholar 

  19. Aggarwal, B. B., Sethi, G., Ahn, K. S., Sandur, S. K., Pandey, M. K., Kunnumakkara, A. B., et al. (2006). Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. Annals of the New York Academy Sciences, 1091, 151–169.

    Article  CAS  Google Scholar 

  20. Sun, Y., Lee, J. H., Kim, N. H., Lee, C. W., Kim, M. J., Kim, S. H., et al. (2009). Lysophosphatidylcholine-induced apoptosis in H19-7 hippocampal progenitor cells is enhanced by the upregulation of Fas ligand. Biochimica et Biophysica Acta, 1791(1), 61–68.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi, M., Okazaki, H., Ogata, Y., Takeuchi, K., Ikeda, U., & Shimada, K. (2002). Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis, 161(2), 387–394.

    Article  PubMed  CAS  Google Scholar 

  22. Yun, D. H., Jeon, E. S., Sung, S. M., Ryu, S. H., & Kim, J. H. (2006). Lysophosphatidylcholine suppresses apoptosis and induces neurite outgrowth in PC12 cells through activation of phospholipase D2. Experimental and Molecular Medicine, 38(4), 375–384.

    Article  PubMed  CAS  Google Scholar 

  23. Sherry, M. M., Reeves, A., Wu, J. K., & Cochran, B. H. (2009). STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells, 27(10), 2383–2392.

    Article  PubMed  CAS  Google Scholar 

  24. Mencalha, A. L., Binato, R., Ferreira, G. M., Du Rocher, B., & Abdelhay, E. (2012). Forkhead box M1 (FoxM1) gene is a new STAT3 transcriptional factor target and is essential for proliferation, survival and DNA repair of K562 cell line. PLoS One, 7(10), 48160.

    Article  Google Scholar 

  25. Glozak, M. A., & Seto, E. (2007). Histone deacetylases and cancer. Oncogene, 26(37), 5420–5432.

    Article  PubMed  CAS  Google Scholar 

  26. Codd, R., Braich, N., Liu, J., Soe, C. Z., & Pakchung, A. A. (2009). Zn(II)-dependent histone deacetylase inhibitors: Suberoylanilide hydroxamic acid and trichostatin A. International Journal of Biochemistry & Cell Biology, 41(4), 736–739.

    Article  CAS  Google Scholar 

  27. Rasheed, W. K., Johnstone, R. W., & Prince, H. M. (2007). Histone deacetylase inhibitors in cancer therapy. Expert Opinion on Investigational Drugs, 16(5), 659–678.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue, S., Mai, A., Dyer, M. J., & Cohen, G. M. (2006). Inhibition of histone deacetylase class I but not class II is critical for the sensitization of leukemic cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Research, 66(13), 6785–6792.

    Article  PubMed  CAS  Google Scholar 

  29. Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.

    Article  PubMed  CAS  Google Scholar 

  30. Thoennissen, N. H., Iwanski, G. B., Doan, N. B., Okamoto, R., Lin, P., Abbassi, S., et al. (2009). Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Research, 69(14), 5876–5884.

    Article  PubMed  CAS  Google Scholar 

  31. Sen, B., Saigal, B., Parikh, N., Gallick, G., & Johnson, F. M. (2009). Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Research, 69(5), 1958–1965.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, C., Sun, M., Liu, L., & Zhou, G. W. (2003). The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene, 306, 1–12.

    Article  PubMed  CAS  Google Scholar 

  33. Bruecher-Encke, B., Griffin, J. D., Neel, B. G., & Lorenz, U. (2001). Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia, 15(9), 1424–1432.

    Article  PubMed  CAS  Google Scholar 

  34. Gao, S. P., & Bromberg, J. F. (2006). Touched and moved by STAT3. Science’s STKE: Signal Transduction Knowledge Environment, 343, pe30.

    Google Scholar 

  35. Lin, T. Y., Fenger, J., Murahari, S., Bear, M. D., Kulp, S. K., Wang, D., et al. (2010). AR-42, a novel HDAC inhibitor, exhibits biologic activity against malignant mast cell lines via down-regulation of constitutively activated kit. Blood, 115(21), 4217–4225.

    Article  PubMed  CAS  Google Scholar 

  36. Togi, S., Kamitani, S., Kawakami, S., Ikeda, O., Muromoto, R., Nanbo, A., et al. (2009). HDAC3 influences phosphorylation of STAT3 at serine 727 by interacting with PP2A. Biochemical and Biophysical Research Communications, 379(2), 616–620.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2012-0005755).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Kim.

Additional information

Ji Hoon Jung and Soo-Jin Jeong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.H., Jeong, SJ., Kim, JH. et al. Inactivation of HDAC3 and STAT3 is Critically Involved in 1-Stearoyl-sn-Glycero-3-Phosphocholine-Induced Apoptosis in Chronic Myelogenous Leukemia K562 Cells. Cell Biochem Biophys 67, 1379–1389 (2013). https://doi.org/10.1007/s12013-013-9670-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9670-0

Keywords

Navigation