Advertisement

Cell Biochemistry and Biophysics

, Volume 67, Issue 3, pp 1365–1370 | Cite as

Novel Precursors of Fluorescent Dyes. 1. Interaction of the Dyes with Model Phospholipid in Monolayers

  • Sergei Yu. ZaitsevEmail author
  • Mikhail N. Shaposhnikov
  • Daria O. Solovyeva
  • Ilia S. Zaitsev
  • Dietmar Möbius
Original Paper

Abstract

Photoactivated (“caged”) fluorescent dyes are modern tools for structure and function studies of cell membranes and subcellular organelles. Recently synthesized precursors of rhodamine fluorescent dyes (abbreviations PFD813 and PFD814) important for microscopic probing of biological objects have been studied in solution. In order to characterize the behavior at interfaces, monolayers of PFD813 and PFD814 on water have been formed and investigated. The interactions of these precursors with the biomembrane component dimyristoylphosphatidylethanolamine in monolayers at the air–water interface and after transfer to glass plates have been studied by measuring monolayer parameters and spectroscopic properties before and after photo-chemical formation of the fluorescent rhodamine dyes Rho813 and Rho814, respectively.

Keywords

Fluorescent dyes Photoactivation Monolayers Biomembranes Lipids 

Notes

Acknowledgments

Some parts of this work were supported by grants from Russian Foundation for Basic Research (10-03-00711), Russian Ministry of Education and Sciences (agreement 8461 and 02.740.11.0513), DAAD and Max-Planck Society (Institute for Biophysical Chemistry, Göttingen, Germany). We thank Dr. Svirshchevskaya E.V. and Ph.D.-student Generalov A.A. for cell cultivation and suggestions on cell staining experiments; Dr. Belov V. N. for preparation of the precursors of fluorescent dyes, and Krichevsky D.M. for technical assistance.

Supplementary material

12013_2013_9668_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 85 kb)
12013_2013_9668_MOESM2_ESM.jpg (1.2 mb)
Supplementary material 2 (JPG 1,208 kb)
12013_2013_9668_MOESM3_ESM.jpg (1.2 mb)
Supplementary material 3 (JPG 1,268 kb)
12013_2013_9668_MOESM4_ESM.jpg (1.3 mb)
Supplementary material 4 (JPG 1,379 kb)
12013_2013_9668_MOESM5_ESM.jpg (1.3 mb)
Supplementary material 5 (JPG 1,305 kb)
12013_2013_9668_MOESM6_ESM.jpg (9.5 mb)
Supplementary material 6 (JPG 9,731 kb)

References

  1. 1.
    Ulman, A. (1991). An introduction to ultrathin organic films: from Langmuir–Blodgett to self-assembly. Boston: Academic Press.Google Scholar
  2. 2.
    Lehn, J. M. (1995). Supramolecular chemistry: Concepts and perspectives. Weinheim: VCH.CrossRefGoogle Scholar
  3. 3.
    Zaitsev, S. Y. (2010). Supramolecular nanodimentional systems at the interfaces: Concepts and perspectives for bio nanotechnology. Moscow: LENAND.Google Scholar
  4. 4.
    Zaitsev, S. Y. (2009). Membrane nanostructures on the basis of biologically active compounds for bionanotechnological purposes. Nanotechnologies in Russia, 4, 379–396.CrossRefGoogle Scholar
  5. 5.
    Zaitsev, S. Yu., Solovyeva, D. O., & Nabiev, I. (2012). Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties. Advances in Colloid and Interface Science, 183-184, 14–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Zaitsev, S. Y., Zarudnaya, E. N., Möbius, D., Bondarenko, V. V., Maksimov, V. I., Zaitsev, I. S., et al. (2008). Ultrathin chemosensoring films with a photosensitive bis(crown ether) derivative. Mendeleev Communications, 18, 270–272.CrossRefGoogle Scholar
  7. 7.
    Ushakov, E. P., Alfimov, M. V., & Gromov, S. P. (2008). Design principles for optical molecular sensors and photocontrolled receptors based on crown ethers. Russian Chemical Reviews, 77, 39–59.CrossRefGoogle Scholar
  8. 8.
    Zaitsev, S. Y., Vereschetin, V. P., Gromov, S. P., Fedorova, O. A., Alfimov, M. V., Huesmann, H., et al. (1997). Photosensitive supramolecular systems based on amphiphilic crown ether. Supramolecular Science, 4, 519–524.CrossRefGoogle Scholar
  9. 9.
    Zaitsev, S. Y., Gromov, S. P., Fedorova, O. A., Baryshnikova, E. A., Vereshchetin, V. P., Zeiss, W., et al. (1998). Monolayers of an amphiphilic crown-ether styryl dye. Colloid and Surface, 131, 325–332.CrossRefGoogle Scholar
  10. 10.
    Zaitsev, S. Y., Baryshnikova, E. A., Sergeeva, T. I., Gromov, S. P., Fedorova, O. A., Yescheulova, O. V., et al. (2000). Monolayers of the photosensitive benzodithia-15-crown-5 derivative. Colloid and Surface, 171, 283–290.CrossRefGoogle Scholar
  11. 11.
    Sergeeva, T. I., Gromov, S. P., Vedernikov, A. I., Kapichnikova, M. S., Alfimov, M. V., Zaitsev, S. Y., et al. (2005). Organization in monolayers at the air-water interface of butadienyl dyes containing benzodithiacrown-ether or dimethoxybenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 264, 207–214.CrossRefGoogle Scholar
  12. 12.
    Sergeeva, T. I., Gromov, S. P., Vedernikov, A. I., Kapichnikova, M. S., Alfimov, M. V., Möbius, D., et al. (2005). Mixed Langmuir monolayers of an amphiphilic chromo-ionophore and the phospholipid DMPC. Applied Surface Science, 246, 377–380.CrossRefGoogle Scholar
  13. 13.
    Turshatov, A. A., Möbius, D., Bossi, M. L., Hell, S. W., Vedernikov, A. I., Lobova, N. A., et al. (2006). Molecular organization of an amphiphilic styryl pyridinium dye in monolayers at the air/water interface in the presence of various anions. Langmuir, 22, 1571–1579.PubMedCrossRefGoogle Scholar
  14. 14.
    Zaitsev, S. Y., Turshatov, A. A., Möbius, D., Gromov, S. P., & Alfimov, M. V. (2010). Organization and properties of a novel amphiphilic crown-ether dye in monolayers at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354, 51–55.CrossRefGoogle Scholar
  15. 15.
    Politz, J. C. (1999). Use of caged fluorochromes to track macromolecular movement in living cells. Cell Biology, 1999(9), 284–287.Google Scholar
  16. 16.
    Hell, S. W. (2007). Far-field optical nanoscopy. Science, 2007(316), 1153–1158.CrossRefGoogle Scholar
  17. 17.
    Foelling, J., Belov, V., Kunetsky, R., Medda, R., Schoenle, A., Egner, A., et al. (2007). Photochromic rhodamines provide nanoscopy with optical sectioning. Angewandte Chemie International Edition, 46, 6266–6270.CrossRefGoogle Scholar
  18. 18.
    Boyarskiy, V. P., Belov, V., Medda, R., Hein, B., Bossi, M., & Hell, S. W. (2008). Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry—A European Journal, 14, 1784–1792.CrossRefGoogle Scholar
  19. 19.
    Belov, V., Wurm, C. A., Boyarskiy, V. P., Jakobs, S., Hell, S. W., & Rhodamines, N. N. (2010). A novel class of caged fluorescent dyes. Angewandte Chemie International Edition, 49, 3520–3523.CrossRefGoogle Scholar
  20. 20.
    Zaitsev, S. Y., Belov, V., Mitronova, G. Y., & Möbius, D. (2010). Mixed monolayers of a novel rhodamine derivative. Mendeleev Communications, 20, 203–204.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sergei Yu. Zaitsev
    • 1
    Email author
  • Mikhail N. Shaposhnikov
    • 1
    • 3
  • Daria O. Solovyeva
    • 1
    • 2
  • Ilia S. Zaitsev
    • 1
  • Dietmar Möbius
    • 3
  1. 1.Moscow State Academy of Veterinary Medicine and BiotechnologyMoscowRussia
  2. 2.National Research Nuclear University «MEPhI»MoscowRussia
  3. 3.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations