Skip to main content
Log in

Epigenetic Signature of Early Cardiac Regulatory Genes in Native Human Adipose-Derived Stem Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ADSCs) are stromal mesenchymal stem cells isolated from lipoaspirates, and they display a broad potential to differentiate toward different lineages. The role of epigenetics in regulating the expression of their lineage-specific genes is under evaluation, however till date virtually nothing is known about the relative significance of cardiac-specific transcription factor genes in human ADSCs. The aim of this study was to investigate DNA promoter methylation and relevant histone modifications involving MEF-2C, GATA-4, and Nkx2.5 in native human ADSCs. CpG sites at the transcription start in their promoters were found unmethylated using methylation-specific PCR. Chromatin immunoprecipitation assay showed low levels of total acetylated H3 histone (acH3) and high levels of trimethylated lysine 27 in H3 histone (H3K27me3) which were associated with both GATA-4 and Nkx2.5 promoters, indicating their transcriptional repressive chromatin arrangement. On the other hand, the opposite was apparent for MEF-2C promoter. Accordingly, MEF-2C—but not GATA-4 and Nkx2.5—transcripts were evidenced in native human ADSCs. These results suggest that the chromatin arrangement of these early cardiac regulatory genes could be explored as a level of intervention to address the differentiation of human ADSCs toward the cardiac lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose-derived stem cells

TF:

Transcription factor

MSP:

Methylation-specific PCR

ChIP:

Chromatin immunoprecipitation

RT-PCR:

Reverse transcription PCR

References

  1. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  2. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  3. Noer, A., Sørensen, A. L., Boquest, A. C., & Collas, P. (2006). Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Molecular Biology of the Cell, 17, 3543–3556.

    Article  PubMed  CAS  Google Scholar 

  4. Boquest, A. C., Noer, A., & Collas, P. (2006). Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Reviews, 2, 319–329.

    Article  PubMed  CAS  Google Scholar 

  5. Dragoo, J. L., Samimi, B., Zhu, M., Hame, S. L., Thomas, B. J., Lieberman, J. R., et al. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. Journal of Bone & Joint Surgery, 85, 740–747.

    CAS  Google Scholar 

  6. Zuk, P. A. (2010). The adipose-derived stem cell: Looking back and looking ahead. Molecular Biology of the Cell, 21, 1783–1787.

    Article  PubMed  CAS  Google Scholar 

  7. Mizuno, H., Zuk, P. A., Zhu, M., Lorenz, H. P., Benhaim, P., & Hedrick, M. H. (2002). Myogenic differentiation by human processed lipoaspirate cells. Plastic and Reconstructive Surgery, 109, 199–209.

    Article  PubMed  Google Scholar 

  8. Goudenege, S., Pisani, D. F., Wdziekonski, B., Di Santo, J. P., Bagnis, C., Dani, C., et al. (2009). Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Molecular Therapy, 17, 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  9. Erba, P., Terenghi, G., & Kingham, P. J. (2010). Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Current Stem Cell Research & Therapy, 5, 153–160.

    Article  CAS  Google Scholar 

  10. Brzoska, M., Geiger, H., Gauer, S., & Baer, P. (2005). Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochemical and Biophysical Research Communications, 330, 142–150.

    Article  PubMed  CAS  Google Scholar 

  11. Cousin, B., André, M., Arnaud, E., Pénicaud, L., & Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301, 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  12. Boquest, A. C., Noer, A., Sørensen, A. L., Vekterud, K., & Collas, P. (2007). CpG methylation profiles of endothelial cell-specific gene promoter regions in adipose tissue stem cells suggest limited differentiation potential toward the endothelial cell lineage. Stem Cells, 25, 852–861.

    Article  PubMed  CAS  Google Scholar 

  13. Rangappa, S., Fen, C., Lee, E. H., Bongso, A., & Sim, E. K. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of Thoracic Surgery, 75, 775–779.

    Article  PubMed  Google Scholar 

  14. Planat-Bénard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.

    Article  PubMed  Google Scholar 

  15. Gaustad, K. G., Boquest, A. C., Anderson, B. E., Gerdes, A. M., & Collas, P. (2004). Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 314, 420–427.

    Article  PubMed  CAS  Google Scholar 

  16. Choi, Y. S., Dusting, G. J., Stubbs, S., Arunothayaraj, S., Han, X. L., Collas, P., et al. (2010). Differentiation of human adipose-derived stem cells into beating cardiomyocytes. Journal of Cellular and Molecular Medicine, 14, 878–889.

    Article  PubMed  CAS  Google Scholar 

  17. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N. (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications, 342, 662–670.

    Article  PubMed  CAS  Google Scholar 

  18. Léobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., et al. (2009). Adipose-derived cardiomyogenic cells: In vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83, 757–767.

    Article  PubMed  Google Scholar 

  19. Strem, B. M., Zhu, M., Alfonso, Z., Daniels, E. J., Schreiber, R., Beygui, R., et al. (2005). Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, 7, 282–291.

    Article  PubMed  CAS  Google Scholar 

  20. Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.

    Article  PubMed  CAS  Google Scholar 

  21. Noer, A., Lindeman, L. C., & Collas, P. (2009). Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells and Development, 18, 725–736.

    Article  PubMed  CAS  Google Scholar 

  22. Sørensen, A. L., Timoskainen, S., West, F. D., Vekterud, K., Boquest, A. C., Ahrlund-Richter, L., et al. (2010). Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells and Development, 19, 1257–1266.

    Article  PubMed  Google Scholar 

  23. Sørensen, A. L., Jacobsen, B. M., Reiner, A. H., Andersen, I. S., & Collas, P. (2010). Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Molecular Biology of the Cell, 21, 2066–2077.

    Article  PubMed  Google Scholar 

  24. Behfar, A., Faustino, R. S., Kent Arrell, D., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 45, 523–529.

    Article  PubMed  CAS  Google Scholar 

  25. Bustamante, M., Perán, M., Marchal, J. A., Rodríguez-Serrano, F., Álvarez, P., & Aránega, A. (2012). Treatment of heart disease: use of transdifferentiation methodology for reprogramming adult stem cells. In M. A. Hayat (Ed.), Stem cells and cancer stem cells (pp. 168–183). Dordrecht: Springer.

    Google Scholar 

  26. Sanz-Ruiz, R., Santos, M. E., Muñoa, M. D., Martín, I. L., Parma, R., Fernández, P. L., et al. (2008). Adipose tissue-derived stem cells: The friendly side of a classic cardiovascular foe. Journal of Cardiovascular Translational Research, 1, 55–63.

    Article  PubMed  Google Scholar 

  27. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432.

    Article  PubMed  CAS  Google Scholar 

  28. Mohn, F., & Schübeler, D. (2009). Genetics and epigenetics: Stability and plasticity during cellular differentiation. Trends in Genetics, 25, 129–136.

    Article  PubMed  CAS  Google Scholar 

  29. Fisher, C. L., & Fisher, A. G. (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Current Opinion in Genetics & Development, 21, 140–146.

    Article  CAS  Google Scholar 

  30. Schuettengruber, B., & Cavalli, G. (2009). Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development, 136, 3531–3542.

    Article  PubMed  CAS  Google Scholar 

  31. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  32. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  33. Collas, P. (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics, 5, 476–482.

    Article  PubMed  CAS  Google Scholar 

  34. Park, E., & Patel, A. N. (2010). PKC-delta induces cardiomyogenic gene expression in human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 393, 582–586.

    Article  PubMed  CAS  Google Scholar 

  35. Gal-Yam, E. N., Egger, G., Iniguez, L., Holster, H., Einarsson, S., Zhang, X., et al. (2008). Frequent switching of polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proceedings of the National Academy of Sciences of the United States of America, 105, 12979–12984.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institute for Cardiovascular Research (INRC) for granting resources to partially cover the fellowship of AP, FB, and MG. Fellowship of AP was partially covered by funding from the Fondazione Cassa di Risparmio di Cesena. The authors thank Annalisa Facchini for her technical advice on setting real time RT-PCR protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasini, A., Bonafè, F., Govoni, M. et al. Epigenetic Signature of Early Cardiac Regulatory Genes in Native Human Adipose-Derived Stem Cells. Cell Biochem Biophys 67, 255–262 (2013). https://doi.org/10.1007/s12013-013-9610-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9610-z

Keywords

Navigation