Icariin Protects Against Glucocorticoid-Induced Osteoporosis In Vitro and Prevents Glucocorticoid-Induced Osteocyte Apoptosis In Vivo

Abstract

Icariin is the major active ingredient in Herba epimedii which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aims to evaluate the osteoprotective effect of Icariin in glucocorticoid-induced osteoporosis in vivo and investigate the effect of Icariin on glucocorticoid-induced osteocyte apoptosis in vitro. A total of 48 female Sprague–Dawley rats were used. Glucocorticoid-induced osteoporosis was induced by daily injections of dexamethasone (0.1 mg/kg, daily, s.c.) for 60 days, whereas sham animals were injected daily with vehicle. At the end of the osteoporosis development period, osteoporotic rats were randomized to receive: vehicle (n = 8), Icariin (5,125 mg/kg, i.g.; n = 8), or alendronate (0.03 mg/kg, s.c.; n = 8) for 12 weeks. Sham animals were treated with vehicle for 12 weeks. At the beginning and at the end of treatments, animals were examined for bone mineral density. Serum bone-alkaline phosphatase and carboxy-terminal collagen cross links were measured. Primary osteocytes were isolated, and apoptosis was determined by trypan-blue assay. Interaction between Icariin and estrogen receptor and prosurvival signaling pathways activated by Icariin were also investigated. Icariin showed a comparable efficacy with alendronate in increasing bone mass. Icariin significantly increased bone-alkaline phosphatase (bone formation marker) and reduced carboxy-terminal collagen cross links (bone resorption marker). In vitro studies demonstrated that Icariin significantly prevented GC-induced apoptosis in osteocytes by activating ERK signaling via estrogen receptor. Our results suggest that Icariin might exert osteoprotective effect by maintaining osteocyte viability, thereby, regulating bone remodeling. Furthermore, our study provides preclinical evidence for the efficacy of Icariin for management of Glucocorticoid-induced osteoporosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Liu, Y., Porta, A., Peng, X., Gengaro, K., Cunningham, E. B., Li, H., et al. (2004). Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. Journal of Bone and Mineral Research, 19(3), 479–490.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Patschan, D., Loddenkemper, K., & Buttgereit, F. (2001). Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone, 29(6), 498–505.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Reid, I. R. (1997). Glucocorticoid osteoporosis–mechanisms and management. European Journal of Endocrinology, 137(3), 209–217.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Lukert, B. P., & Raisz, L. G. (1990). Glucocorticoid-induced osteoporosis: pathogenesis and management. Annals of Internal Medicine, 112(5), 352–364.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Feher, J. J., & Wasserman, R. H. (1979). Intestinal calcium-binding protein and calcium absorption in cortisol-treated chicks: effects of vitamin D3 and 1,25-dihydroxyvitamin D3. Endocrinology, 104(2), 547–551.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Manolagas, S. C. (2000). Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, 21(2), 115–137.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Canalis, E., & Delany, A. M. (2002). Mechanisms of glucocorticoid action in bone. Annals of the New York Academy of Sciences, 966, 73–81.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Weinstein, R. S., Jilka, R. L., Parfitt, A. M., & Manolagas, S. C. (1998). Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. The Journal of Clinical Investigation, 102(2), 274–282.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Bonewald, L. F., & Johnson, M. L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone, 42(4), 606–615.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Manolagas, S. C. (2000). Corticosteroids and fractures: a close encounter of the third cell kind. Journal of Bone and Mineral Research, 15(6), 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Kitase, Y., Barragan, L., Qing, H., Kondoh, S., Jiang, J. X., Johnson, M. L., et al. (2010). Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. Journal of Bone and Mineral Research, 25(12), 2657–2668.

    Article  PubMed  Google Scholar 

  12. 12.

    Adachi, J. D., Bensen, W. G., Bianchi, F., Cividino, A., Pillersdorf, S., Sebaldt, R. J., et al. (1996). Vitamin D and calcium in the prevention of corticosteroid induced osteoporosis: a 3 year followup. Journal of Rheumatology, 23(6), 995–1000.

    CAS  PubMed  Google Scholar 

  13. 13.

    Ringe, J. D., Coster, A., Meng, T., Schacht, E., & Umbach, R. (1999). Treatment of glucocorticoid-induced osteoporosis with alfacalcidol/calcium versus vitamin D/calcium. Calcified Tissue International, 65(4), 337–340.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Eastell, R., Devogelaer, J. P., Peel, N. F., Chines, A. A., Bax, D. E., Sacco-Gibson, N., et al. (2000). Prevention of bone loss with risedronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporosis International, 11(4), 331–337.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Boutsen, Y., Jamart, J., Esselinckx, W., & Devogelaer, J. P. (2001). Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3 months, and calcium alone. Journal of Bone and Mineral Research, 16(1), 104–112.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Crandall, C. (2002). Parathyroid hormone for treatment of osteoporosis. Archives of Internal Medicine, 162(20), 2297–2309.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Sambrook, P. N. (2007). Anabolic therapy in glucocorticoid-induced osteoporosis. New England Journal of Medicine, 357(20), 2084–2086.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Bitto, A., Burnett, B. P., Polito, F., Levy, R. M., Marini, H., Di Stefano, V., et al. (2009). Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: a comparative study with alendronate. British Journal of Pharmacology, 156(8), 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Xu, D., Yang, W., Zhou, C., Liu, Y., & Xu, B. (2010). Preventive effects of berberine on glucocorticoid-induced osteoporosis in rats. Planta Medica, 76(16), 1809–1813.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Mok, S. K., Chen, W. F., Lai, W. P., Leung, P. C., Wang, X. L., Yao, X. S., et al. (2010). Icariin protects against bone loss induced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR 106 cells. British Journal of Pharmacology, 159(4), 939–949.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Zhang, G., Qin, L., & Shi, Y. (2007). Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. Journal of Bone and Mineral Research, 22(7), 1072–1079.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Nian, H., Ma, M. H., Nian, S. S., & Xu, L. L. (2009). Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine, 16(4), 320–326.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Wang, F. S., Ko, J. Y., Yeh, D. W., Ke, H. C., & Wu, H. L. (2008). Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology, 149(4), 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Gu, G., Hentunen, T. A., Nars, M., Harkonen, P. L., & Vaananen, H. K. (2005). Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis. Apoptosis, 10(3), 583–595.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Yun, S. I., Yoon, H. Y., Jeong, S. Y., & Chung, Y. S. (2009). Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. Journal of Bone and Mineral Metabolism, 27(2), 140–148.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Hsieh, T. P., Sheu, S. Y., Sun, J. S., & Chen, M. H. (2011). Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-kappaB regulated HIF-1alpha and PGE(2) synthesis. Phytomedicine, 18(2–3), 176–185.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Han, E. H., Kim, H. G., Hwang, Y. P., Song, G. Y., & Jeong, H. G. (2010). Prostaglandin E2 induces CYP1B1 expression via ligand-independent activation of the ERalpha pathway in human breast cancer cells. Toxicological Sciences, 114(2), 204–216.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Zheng, D., Peng, S., Yang, S. H., Shao, Z. W., Yang, C., Feng, Y., et al. (2012). The beneficial effect of Icariin on bone is diminished in osteoprotegerin-deficient mice. Bone, 51(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Xie, F., Wu, C. F., Lai, W. P., Yang, X. J., Cheung, P. Y., Yao, X. S., et al. (2005). The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evidence-Based Complementary and Alternative Medicine, 2(3), 353–361.

    Article  PubMed  Google Scholar 

  30. 30.

    Huang, J., Yuan, L., Wang, X., Zhang, T. L., & Wang, K. (2007). Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sciences, 81(10), 832–840.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Ma, H. P., Ming, L. G., Ge, B. F., Zhai, Y. K., Song, P., Xian, C. J., et al. (2011). Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. Journal of Cellular Biochemistry, 112(3), 916–923.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Chen, K. M., Ge, B. F., Liu, X. Y., Ma, P. H., Lu, M. B., Bai, M. H., et al. (2007). Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture. Pharmazie, 62(5), 388–391.

    CAS  PubMed  Google Scholar 

  33. 33.

    Rochefort, G. Y., Pallu, S., & Benhamou, C. L. (2010). Osteocyte: the unrecognized side of bone tissue. Osteoporosis International, 21(9), 1457–1469.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Robling, A. G., Bellido, T., & Turner, C. H. (2006). Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. The Journal of Musculoskeletal and Neuronal Interactions, 6(4), 354.

    CAS  Google Scholar 

  35. 35.

    Vance, J., Galley, S., Liu, D. F., & Donahue, S. W. (2005). Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Engineering, 11(11–12), 1832–1839.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Basso, N., & Heersche, J. N. (2006). Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone, 39(4), 807–814.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Meng, L., Cheng, Z., Rong-xin, H., & Li-feng, C. (2012). Icariin associated with exercise therapy is an effective treatment for postmenopausal osteoporosis. Chinese Medical Journal (English Edition), 125(10), 1784–1789.

    Google Scholar 

  38. 38.

    Seeman, E. (2006). Osteocytes–martyrs for integrity of bone strength. Osteoporosis International, 17(10), 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Ma, Y. L., Cain, R. L., Halladay, D. L., Yang, X., Zeng, Q., Miles, R. R., et al. (2001). Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology, 142(9), 4047–4054.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Noble, B. S., Stevens, H., Loveridge, N., & Reeve, J. (1997). Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone, 20(3), 273–282.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Tatsumi, S., Ishii, K., Amizuka, N., Li, M., Kobayashi, T., Kohno, K., et al. (2007). Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metabolism, 5(6), 464–475.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Verborgt, O., Gibson, G. J., & Schaffler, M. B. (2000). Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone and Mineral Research, 15(1), 60–67.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Kogianni, G., Mann, V., & Noble, B. S. (2008). Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. Journal of Bone and Mineral Research, 23(6), 915–927.

    Article  PubMed  Google Scholar 

  44. 44.

    Zand, R. S., Jenkins, D. J., & Diamandis, E. P. (2000). Steroid hormone activity of flavonoids and related compounds. Breast Cancer Research and Treatment, 62(1), 35–49.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Liu, J., Ye, H., & Lou, Y. (2005). Determination of rat urinary metabolites of icariin in vivo and estrogenic activities of its metabolites on MCF-7 cells. Pharmazie, 60(2), 120–125.

    PubMed  Google Scholar 

  46. 46.

    Bhargavan, B., Gautam, A. K., Singh, D., Kumar, A., Chaurasia, S., Tyagi, A. M., et al. (2009). Methoxylated isoflavones, cajanin and isoformononetin, have non-estrogenic bone forming effect via differential mitogen activated protein kinase (MAPK) signaling. Journal of Cellular Biochemistry, 108(2), 388–399.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Plotkin, L. I., Weinstein, R. S., Parfitt, A. M., Roberson, P. K., Manolagas, S. C., & Bellido, T. (1999). Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. The Journal of Clinical Investigation, 104(10), 1363–1374.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Kousteni, S., Bellido, T., Plotkin, L. I., O’Brien, C. A., Bodenner, D. L., Han, L., et al. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell, 104(5), 719–730.

    CAS  PubMed  Google Scholar 

  49. 49.

    Kousteni, S., Han, L., Chen, J. R., Almeida, M., Plotkin, L. I., Bellido, T., et al. (2003). Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. The Journal of Clinical Investigation, 111(11), 1651–1664.

    CAS  PubMed  Google Scholar 

  50. 50.

    Chung, B. H., Kim, J. D., Kim, C. K., Kim, J. H., Won, M. H., Lee, H. S., et al. (2008). Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3 K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochemical and Biophysical Research Communications, 376(2), 404–408.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Pang, W. Y., Wang, X. L., Mok, S. K., Lai, W. P., Chow, H. K., Leung, P. C., et al. (2010). Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. British Journal of Pharmacology, 159(8), 1693–1703.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from the National Natural Science Foundation of China (81000323) and the Natural Science Foundation of Shandong Province, China (ZR2009CM067).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rongjie Feng.

Additional information

Rongjie Feng and Li Feng contributed equally to this paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, R., Feng, L., Yuan, Z. et al. Icariin Protects Against Glucocorticoid-Induced Osteoporosis In Vitro and Prevents Glucocorticoid-Induced Osteocyte Apoptosis In Vivo. Cell Biochem Biophys 67, 189–197 (2013). https://doi.org/10.1007/s12013-013-9533-8

Download citation

Keywords

  • Icariin
  • Glucocorticoid-induced osteoporosis
  • Osteocyte apoptosis