Cell Biochemistry and Biophysics

, Volume 66, Issue 3, pp 513–521 | Cite as

Age-Dependent Effects of ELF-MF on Oxidative Stress in the Brain of Mongolian Gerbils

  • Vesna Selaković
  • Snežana Rauš Balind
  • Lidija Radenović
  • Zlatko Prolić
  • Branka Janać
Original Paper


The aim of study was to investigate the effects of extremely low frequency magnetic field (ELF-MF; 50 Hz; 0.1, 0.25 and 0.5 mT) on oxidative stress in the brain of 3- (adult) and 10-month-old (middle-aged) gerbils. Nitric oxide (NO) level, superoxide (O2 ) production, superoxide dismutase (SOD) activity, and index of lipid peroxidation (ILP) were measured in the forebrain cortex, striatum, hippocampus, and cerebellum immediately and 3 days after cessation of 7-day exposure. In all gerbils, ELF-MF significantly increased oxidative stress in all tested brain regions. This effect was correlated with the value of magnetic induction and was higher in middle-aged gerbils. Three days after cessation of exposure, the values of examined parameters were closer to control levels. In adult gerbils, the effect of ELF-MF of 0.1 mT on NO level, O2 production and SOD activity was almost fully disappeared, and ILP was at the control level regardless of the value of magnetic induction. In middle-aged gerbils, the effect of ELF-MF was still present but to a lesser degree than those observed immediately after cessation of exposure. These findings pointed out the ability of ELF-MF to induce age- and magnetic induction-dependent modification of oxidative stress in the brain.


50 Hz magnetic field Oxidative stress Brain Aging Gerbils 



This study was supported by Grant of the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Grant No. 173027) and MMA Grant (VMA/06-10/B.4). The authors are grateful to Dr. Spomenko Mihajlović (Department of Geomagnetism and Aeronomy, Sector for Geodetic Works, Republic Geodetic Authority, Republic of Serbia) for providing geomagnetic activity data.

Conflict of interest

The authors report no declarations of interest.


  1. 1.
    Harman, D. (2001). Aging: overview. Annals of the New York Academy of Sciences, 928, 1–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Cui, H., Kong, Y., & Zhang, H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. Journal of Signal Transduction, 2012, 646354.Google Scholar
  3. 3.
    Kirkwood, T. B. (2005). Time of our lives. What controls the length of life? EMBO Reports, 6, S4–S8.PubMedCrossRefGoogle Scholar
  4. 4.
    Sugawara, T., & Chan, P. H. (2003). Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxidants & Redox Signaling, 5, 597–607.CrossRefGoogle Scholar
  5. 5.
    Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedGoogle Scholar
  6. 6.
    Calabrese, V., Boyd-Kimball, D., Scapagnini, G., & Butterfield, D. A. (2004). Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo, 18, 245–267.PubMedGoogle Scholar
  7. 7.
    Sies, H. (1993). Strategies of antioxidant defense. European Journal of Biochemistry, 215, 213–219.PubMedCrossRefGoogle Scholar
  8. 8.
    Fraga, C. G., Shigenaga, M. K., Park, J. W., Degan, P., & Ames, B. N. (1990). Oxidative damage to DNA during aging: 8-Hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Academy of Sciences of the United States of America, 87, 4533–4537.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamilton, M. L., Van Remmen, H., Drake, J. A., Yang, H., Guo, Z. M., Kewitt, K., et al. (2001). Does oxidative damage to DNA increase with age? Proceedings of the National Academy of Sciences of the United States of America, 98, 10469–10474.PubMedCrossRefGoogle Scholar
  10. 10.
    Kregel, K. C., & Zhang, H. J. (2007). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292, 18–36.CrossRefGoogle Scholar
  11. 11.
    Brocklehurst, B., & McLauchlan, K. A. (1996). Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. International Journal of Radiation Biology, 69, 3–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Scaiano, J. C., Cozens, F. L., & McLean, J. (1994). Model for the rationalization of magnetic field effects in vivo. Application of the radical-pair mechanism to biological systems. Photochemistry and Photobiology, 59, 585–589.PubMedGoogle Scholar
  13. 13.
    Batcioglu, K., Ozturk, C., Atalay, S., Dogan, D., Bayri, N., & Demirtas, H. (2002). Investigation of time dependent magnetic field effects on superoxide dismutase and catalase activity: an in vitro study. Journal of Biological Physics and Chemistry, 2, 108–112.CrossRefGoogle Scholar
  14. 14.
    Lee, B. C., Johng, H. M., Lim, J. K., Jeong, J. H., Baik, K. Y., Nam, T. J., et al. (2004). Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study. Journal of Photochemistry and Photobiology B: Biology, 73, 43–48.CrossRefGoogle Scholar
  15. 15.
    Jelenković, A., Janać, B., Pesić, V., Jovanović, D. M., Vasiljević, I., & Prolić, Z. (2006). Effects of extremely low-frequency magnetic field in the brain of rats. Brain Research Bulletin, 68, 355–360.PubMedCrossRefGoogle Scholar
  16. 16.
    Coşkun, S., Balabanli, B., Canseven, A., & Seyhan, N. (2009). Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo. Neurochemical Research, 34, 238–243.PubMedCrossRefGoogle Scholar
  17. 17.
    Ciejka, E., Kleniewska, P., Skibska, B., & Goraca, A. (2011). Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. Journal of Physiology and Pharmacology, 62, 657–661.PubMedGoogle Scholar
  18. 18.
    Janać, B., Selaković, V., Rauš, S., Radenović, L., Zrnić, M., & Prolić, Z. (2012). Temporal patterns of extremely low frequency magnetic field-induced motor behavior changes in Mongolian gerbils of different age. International Journal of Radiation Biology, 88, 359–366.PubMedCrossRefGoogle Scholar
  19. 19.
    Nikolić, L. M., Rokić, M. B., Todorović, N. V., Kartelija, G. S., Nedeljković, M. S., & Zakrzewska, J. S. (2010). Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biological Research, 43, 243–250.PubMedGoogle Scholar
  20. 20.
    Guevara, I., Iwanejko, J., Dembinska-Kiec, A., Pankiewicz, J., Wanat, A., Anna, P., et al. (1998). Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clinica Chimica Acta, 274, 177–188.CrossRefGoogle Scholar
  21. 21.
    Spitz, D. R., & Oberley, L. W. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry, 179, 8–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.PubMedGoogle Scholar
  23. 23.
    Rehncrona, S., Smith, D. S., Akesson, B., Westerberg, E., & Siesjo, B. K. (1980). Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+ and ascorbic acid-stimulated lipid peroxidation in vitro. Journal of Neurochemistry, 34, 1630–1638.PubMedCrossRefGoogle Scholar
  24. 24.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  25. 25.
    Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signaling, 7, 472–481.CrossRefGoogle Scholar
  26. 26.
    Dröge, W. (2003). Oxidative stress and aging. Advances in Experimental Medicine and Biology, 543, 191–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang, H. J., Doctrow, S. R., Xu, L., Oberley, L. W., Beecher, B., Morrison, J., et al. (2004). Redox modulation of the liver with chronic antioxidant enzyme mimetic treatment prevents age-related oxidative damage associated with environmental stress. FASEB Journal, 18, 1547–1549.PubMedGoogle Scholar
  28. 28.
    Frahm, J., Lantow, M., Lupke, M., Weiss, D. G., & Simkó, M. (2006). Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. Journal of Cellular Biochemistry, 99, 168–177.PubMedCrossRefGoogle Scholar
  29. 29.
    Lupke, M., Frahm, J., Lantow, M., Maercker, C., Remondini, D., Bersani, F., et al. (2006). Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochimica et Biophysica Acta, 1763, 402–412.PubMedCrossRefGoogle Scholar
  30. 30.
    Di Loreto, S., Falone, S., Caracciolo, V., Sebastiani, P., D’Alessandro, A., Mirabilio, A., et al. (2009). Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. Journal of Cellular Physiology, 219, 334–343.PubMedCrossRefGoogle Scholar
  31. 31.
    Kavaliers, M., Choleris, E., Prato, F. S., & Ossenkopp, K. (1998). Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Research, 809, 50–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Jeong, J. H., Kum, C., Choi, H. J., Park, E. S., & Sohn, U. D. (2006). Extremely low frequency magnetic field induces hyperalgesia in mice modulated by nitric oxide synthesis. Life Sciences, 78, 1407–1412.PubMedCrossRefGoogle Scholar
  33. 33.
    Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624.PubMedCrossRefGoogle Scholar
  34. 34.
    Huang, C., Ye, H., Xu, J., Liu, J., & Qu, A. (2000). Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 17, 63–65.PubMedGoogle Scholar
  35. 35.
    Yoshikawa, T., Tanigawa, M., Tanigawa, T., Imai, A., Hongo, H., & Kondo, M. (2000). Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology, 7, 131–135.PubMedCrossRefGoogle Scholar
  36. 36.
    Falone, S., Grossi, M. R., Cinque, B., D’Angelo, B., Tettamanti, E., Cimini, A., et al. (2007). Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. International Journal of Biochemistry & Cell Biology, 39, 2093–2106.CrossRefGoogle Scholar
  37. 37.
    Zwirska-Korczala, K., Adamczyk-Sowa, M., Polaniak, R., Sowa, P., Birkner, E., Drzazga, Z., et al. (2004). Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture. Biological Trace Element Research, 102, 227–243.PubMedCrossRefGoogle Scholar
  38. 38.
    Rikans, L. E., & Hornbrook, K. R. (1997). Lipid peroxidation, antioxidant protection and aging. Biochimica et Biophysica Acta, 1362, 116–127.PubMedCrossRefGoogle Scholar
  39. 39.
    Poon, H. F., Calabrese, V., Scapagnini, G., & Butterfield, D. A. (2004). Free radicals and brain aging. Clinics in Geriatric Medicine, 20, 329–359.PubMedCrossRefGoogle Scholar
  40. 40.
    Wozniak, A., Drewa, G., Wozniak, B., & Schachtschabel, D. O. (2004). Activity of antioxidant enzymes and concentration of lipid peroxidation products in selected tissues of mice of different ages, both healthy and melanoma-bearing. Zeitschrift fur Gerontologie und Geriatrie, 37, 184–189.PubMedCrossRefGoogle Scholar
  41. 41.
    Bediz, C. S., Baltaci, A. K., Mogulkoc, R., & Oztekin, E. (2006). Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku Journal of Experimental Medicine, 208, 133–140.PubMedCrossRefGoogle Scholar
  42. 42.
    Roskams, A. J., & Connor, J. R. (1994). Iron, transferrin, and ferritin in the rat brain during development and aging. Journal of Neurochemistry, 63, 709–716.PubMedCrossRefGoogle Scholar
  43. 43.
    Ulku, R., Akdag, M. Z., Erdogan, S., Akkus, Z., & Dasdag, S. (2011). Extremely low-frequency magnetic field decreased calcium, zinc and magnesium levels in costa of rat. Biological Trace Element Research, 143, 359–367.PubMedCrossRefGoogle Scholar
  44. 44.
    Powell, S. R. (2000). The antioxidant properties of zinc. Journal of Nutrition, 130, 1447S–1454S.PubMedGoogle Scholar
  45. 45.
    Ozturk, A., Baltaci, A. K., Mogulkoc, R., & Oztekin, E. (2003). Zinc prevention of electromagnetically induced damage to rat testicle and kidney tissues. Biological Trace Element Research, 96, 247–254.PubMedCrossRefGoogle Scholar
  46. 46.
    Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25, 207–218.PubMedCrossRefGoogle Scholar
  47. 47.
    Ponczek, M. B., & Wachowicz, B. (2005). Interaction of reactive oxygen and nitrogen species with proteins. Postepy Biochemii, 51, 140–145.PubMedGoogle Scholar
  48. 48.
    Cui, Y., Ge, Z., Rizak, J. D., Zhai, C., Zhou, Z., Gong, S., et al. (2012). Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS ONE, 7, e32196.PubMedCrossRefGoogle Scholar
  49. 49.
    Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345, 91–104.PubMedCrossRefGoogle Scholar
  50. 50.
    Kumar, H., Lim, H. W., More, S. V., Kim, B. W., Koppula, S., Kim, I. S., et al. (2012). The role of free radicals in the aging brain and Parkinson’s disease: Convergence and parallelism. International Journal of Molecular Sciences, 13, 10478–10504.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vesna Selaković
    • 1
  • Snežana Rauš Balind
    • 2
  • Lidija Radenović
    • 3
  • Zlatko Prolić
    • 2
  • Branka Janać
    • 2
  1. 1.Institute for Medical Research, MMABelgradeSerbia
  2. 2.Laboratory for Magnetobiology and Behaviour, Department of NeurophysiologyInstitute for Biological Research, University of BelgradeBelgradeSerbia
  3. 3.Department of Physiology and Biochemistry, Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations