Skip to main content

Advertisement

Log in

Ovariectomy Reinstates the Infarct Size-Limiting Effect of Postconditioning in Female Rabbits

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Gender seems to interfere with the cardioprotective effect of ischemic preconditioning (PreC) and postconditioning (PostC); PreC-conferred protection is weaker or lost in female animals after ovariectomy (Ov), while the role of PostC is still in dispute. We sought to investigate the effect of PostC in female rabbits, its interaction with Ov, and the potential implicated intracellular pathways. Intact or Ov adult female rabbits (n = 46) were subjected to 30 min ischemia and reperfusion with PostC (PostC or OvPostC), which consisted of six cycles of 30-s ischemia/30-s reperfusion at the end of ischemia, or without PostC (Fem or OvFem). Infarct size (I) and area at risk (R) were determined by TTC staining and fluorescent particles, respectively, after 3-h reperfusion in 30 out of 46 animals. Plasma levels of estradiol and nitrite/nitrate (NO x ) were evaluated. ERKs, p38-MAPK, and Akt assessment was performed in excised hearts 1-min after starting the final reperfusion period in the remaining 16 animals. Infarct size was significantly reduced only in OvPostC group (I/R ratio, 25.3 ± 2.7, vs 48.1 ± 2.0, 43.6 ± 4.2 and 55.1 ± 5.6 % in Fem, OvFem, and PostC groups, p < 0.05). In ovariectomized rabbits, plasma estradiol and NO x levels were lower than in the normal ones. Akt phosphorylation in ischemic regions was significantly higher in OvPostC group, whereas ERK1/2 and p38-MAPK activation was observed in all ovariectomized animals irrespective of PostC. PostC is not effective in female rabbits, but the protection is reinstated after Ov potentially via the RISK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning (PreC). American Journal of Physiology-Heart and Circulatory Physiology, 285, H579–H588.

    PubMed  CAS  Google Scholar 

  2. Hausenloy, D. J., & Yellon, D. M. (2004). New directions for protecting the heart against ischaemia-reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovascular Research, 61, 448–460.

    Article  PubMed  CAS  Google Scholar 

  3. Hausenloy, D. J., & Yellon, D. M. (2003). The mitochondrial permeability transition pore: Its fundamental role in mediating cell death during ischaemia and reperfusion. Journal of Molecular and Cellular Cardiology, 35, 339–341.

    Article  PubMed  CAS  Google Scholar 

  4. Staat, P., Rioufol, G., Piot, C., Cottin, Y., Cung, T. T., L’Huillier, I., et al. (2005). Postconditioning the human heart. Circulation, 112, 2143–2148.

    Article  PubMed  Google Scholar 

  5. Thibault, H., Piot, C., Staat, P., Bontemps, L., Sportouch, C., Rioufol, G., et al. (2008). Long-term benefit of postconditioning. Circulation, 117, 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  6. Hansen, R. R., Thibault, H., & Abdulla, J. (2010). Postconditioning during primary percutaneous coronary intervention: A review and meta-analysis. International Journal of Cardiology, 144, 22–25.

    Article  PubMed  Google Scholar 

  7. Iliodromitis, E. K., Zoga, A., Vrettou, A., Andreadou, I., Paraskevaidis, I. A., Kaklamanis, L., et al. (2006). The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis, 188, 356–362.

    Article  PubMed  CAS  Google Scholar 

  8. Bouhidel, O., Pons, S., Souktani, R., Zini, R., Berdeaux, A., & Ghaleh, B. (2008). Myocardial ischemic postconditioning against ischemia-reperfusion in impaired in ob/ob mice. American Journal of Physiology-Heart and Circulatory Physiology, 295, H1580–H1586.

    Article  PubMed  CAS  Google Scholar 

  9. Boengler, K., Schulz, R., & Heusch, G. (2009). Loss of cardioprotection with ageing. Cardiovascular Research, 83, 247–261.

    Article  PubMed  CAS  Google Scholar 

  10. Barret-Connor, E. (1997). Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation, 95, 252–264.

    Article  Google Scholar 

  11. Culic, V., Miric, D., & Jukic, I. (2003). Acute myocardial infarction: Differing preinfarction and clinical features according to infarct size and gender. International Journal of Cardiology, 90, 189–196.

    Article  PubMed  Google Scholar 

  12. Antonicelli, R., Olivieri, F., Morichi, V., Urbani, E., & Mais, V. (2008). Prevention of cardiovascular events in early menopause: A possible role for hormone replacement therapy. International Journal of Cardiology, 130, 140–146.

    Article  PubMed  Google Scholar 

  13. Shinmura, K., Nagai, M., Tamaki, K., & Bolli, R. (2008). Loss of ischemic preconditioning in ovariectomized rat hearts: Possible involvement of impaired protein kinase C ε phosphorylation. Cardiovascular Research, 79, 387–394.

    Article  PubMed  CAS  Google Scholar 

  14. Sbarouni, E., Iliodromitis, E., Zoga, A., Vlachou, G., Andreadou, I., & Kremastinos, D. T. (2006). The effect of the phytoestrogen genistein on myocardial protection, preconditioning and oxidative stress. Cardiovascular Drugs and Therapy, 20, 253–258.

    Article  PubMed  CAS  Google Scholar 

  15. Penna, C., Tullio, F., Merlino, A., Moro, F., Raimondo, S., Rastaldo, R., et al. (2009). Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Research in Cardiology, 104, 390–402.

    Article  PubMed  Google Scholar 

  16. Crisostomo, P., Wang, M., Wairiuko, G. M., Terrell, A. M., & Meldrum, D. R. (2006). Postconditioning in females depends on injury severity. Journal of Surgical Research, 134, 342–347.

    Article  PubMed  Google Scholar 

  17. Dow, J., & Kloner, R. A. (2007). Postconditioning does not reduce myocardial infarct size in an in vivo regional ischemia rodent model. The Journal of Cardiovascular Pharmacology and Therapeutics, 12, 153–163.

    Article  Google Scholar 

  18. Lee, D. S., Steinbaugh, G. E., Quarrie, R., Yang, F., Talukder, M. A., Zweier, J. L., et al. (2010). Ischemic postconditioning does not provide cardioprotection from long-term ischemic injury in isolated male or female rat hearts. Journal of Surgical Research, 164, 178–181.

    Article  Google Scholar 

  19. Zheng, Z., Yang, M., Zhang, F., Yu, J., Wang, J., Ma, L., et al. (2011). Gender-related difference of sevoflurane postconditioning in isolated rat hearts: Focus on phosphatidylinositol-3-kinase/Akt signaling. Journal of Surgical Research, 170, e3–e9.

    Article  PubMed  CAS  Google Scholar 

  20. Iliodromitis, E. K., Andreadou, I., Prokovas, E., Zoga, A., Farmakis, D., Fotopoulou, T., et al. (2010). Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: Possible role of oxidative/nitrosative stress. Basic Research in Cardiology, 105, 193–203.

    Article  PubMed  CAS  Google Scholar 

  21. Aggeli, I. K., Gaitanaki, C., & Beis, I. (2006). Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cellular Signalling, 18, 1801–1812.

    Article  PubMed  CAS  Google Scholar 

  22. Bogoyevitch, M. A. (2000). Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovascular Research, 45, 826–842.

    Article  PubMed  CAS  Google Scholar 

  23. Argaud, L., Gateau- Roesch, O., Raisky, O., Loufouat, J., Robert, D., & Ovize, M. (2005). Postconditioning inhibits mitochondrial permeability transition. Circulation, 111, 194–197.

    Article  PubMed  CAS  Google Scholar 

  24. Tsang, A., Hausenloy, D. J., Mocanu, M. M., & Yellon, D. M. (2004). Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circulation Research, 95, 230–232.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, X. M., Proctor, J. B., Cui, L., Krieg, T., Downey, J. M., & Cohen, M. V. (2004). Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signalling pathways. Journal of the American College of Cardiology, 44, 1103–1110.

    Article  PubMed  Google Scholar 

  26. Roubille, F., Franck-Miclo, A., Covinches, A., Lafont, C., Cransac, F., Combes, S., et al. (2011). Delayed postconditioning in the mouse heart in vivo. Circulation, 124, 1330–1336.

    Article  PubMed  Google Scholar 

  27. Iliodromitis, E., & Kremastinos, D. (2006). From preconditioning to postconditioning: Novel interventions in the armory of salvage of the ischemic heart. Hellenic Journal of Cardiology, 47, 321–323.

    PubMed  Google Scholar 

  28. Kim, J. K., & Levin, E. R. (2006). Estrogen signaling in the cardiovascular system. Nuclear Receptor Signaling, 4, e013.

    PubMed  Google Scholar 

  29. Hayashi, T., Fukuto, J. M., Ignarro, L. J., & Chaudhuri, G. (1992). Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: Implications for atherosclerosis. Proceeding of National Academy of Science USA, 89, 11259–11263.

    Article  CAS  Google Scholar 

  30. Hayashi, T., Fukuto, J. M., Ignarro, L. J., & Chaudhuri, G. (1995). Gender difference in atherosclerosis: Possible role of nitric oxide. Journal of Cardiovascular Pharmacology, 26, 792–802.

    Article  PubMed  CAS  Google Scholar 

  31. Akiyama, K., Suzuki, H., Grant, P., & Bing, R. J. (1997). Oxidation products of nitric oxide NO2 and NO3 in plasma after experimental myocardial infarction. Journal of Molecular and Cellular Cardiology, 29, 1–7.

    Article  PubMed  CAS  Google Scholar 

  32. Andreadou, I., Iliodromitis, E. K., Mikros, E., Constantinou, M., Agalias, A., Magiatis, P., et al. (2006). The olive constituent oleuropein exhibits anti-ischemic, antioxidative and hypolipidemic effects in anesthetized rabbits. Journal of Nutrition, 136, 2213–2219.

    PubMed  CAS  Google Scholar 

  33. Shuto, H., Tominaga, K., Yamanuchi, A., Ikeda, M., Kusaba, K., Mitsunaga, D., et al. (2011). The statins fluvastatin and pravastatin exert anti-flushing effects by improving vasomotor dysfunction through nitric oxide-mediated mechanism in ovariectomized animals. European Journal of Pharmacology, 651, 234–239.

    Article  PubMed  CAS  Google Scholar 

  34. Akiyama, K., Kimura, A., Suzuki, H., Takeyama, Y., Gluckman, T. L., Tarhakopian, A., et al. (1998). Production of oxidative products of nitric oxide in infracted human heart. Journal of the American College of Cardiology, 32, 373–379.

    Article  PubMed  CAS  Google Scholar 

  35. Andreadou, Ι., Farmakis, D., Prokovas, Ε., Sigala, F., Zoga, Α., Spyridaki, K., et al. (2012). Short-term statin administration in hypercholesterolemic rabbits resistant to postconditioning: Effects on infarct size, endothelial nitric oxide synthase and nitro-oxidative stress. Cardiovascular Research, 94, 501–509.

    Article  PubMed  CAS  Google Scholar 

  36. Salloum, F. N., Takenoshita, Y., Ockaili, R. A., Daoud, V. P., Chou, E., Yoshida, K., et al. (2007). Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. Journal of Molecular and Cellular Cardiology, 42, 453–458.

    Article  PubMed  CAS  Google Scholar 

  37. Takeuchi, K., McGowan, F. X., Danh, H. C., Glynn, P., Simplaceanu, E., & delNido, P. J. (1995). Direct detrimental effects of l-arginine upon ischemia reperfusion injury to myocardium. Journal of Molecular and Cellular Cardiology, 27, 1405–1414.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, M., Baker, L., Tsai, B. M., Meldrum, K. K., & Meldrum, D. R. (2005). Sex differences in the myocardial inflammatory response to ischemia reperfusion injury. The American Journal of Physiology-Endocrinology and Metabolism, 288, E321–E326.

    Article  CAS  Google Scholar 

  39. van Eickels, M., Groh′e, C., Cleutjens, J. P., Janssen, B. J., Wellens, H. J., & Doevendans, P. A. (2001). 17β-Estradiol attenuates the development of pressure-overload hypertrophy. Circulation, 104, 1419–1423.

    Article  PubMed  Google Scholar 

  40. Wang, M., Crisostomo, P., Wairiuko, G. M., & Meldrum, D. R. (2006). Estrogen receptor-α mediates acute myocardial protection in females. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2204–H2209.

    Article  PubMed  CAS  Google Scholar 

  41. Beer, S., Reincke, M., Kral, M., Callies, F., Strömer, H., Dienesch, C., et al. (2007). High-dose 17β-estradiol treatment prevents development of heart failure post-myocardial infarction in the rat. Basic Research in Cardiology, 102, 9–18.

    Article  PubMed  CAS  Google Scholar 

  42. Hugel, S., Reincke, M., Stromer, H., Winning, J., Horn, M., Dienesch, C., et al. (1999). Evidence against a role of physiological concentrations of estrogen in post-myocardial infarction remodeling. Journal of the American College of Cardiology, 34, 1427–1434.

    Article  PubMed  CAS  Google Scholar 

  43. van Eickels, M., Patten, R. D., Aronovitz, M. J., Alsheikh-Ali, A., Gostyla, K., Celestin, F., et al. (2003). 17-β-Estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. Journal of the American College of Cardiology, 41, 2084–2092.

    Article  PubMed  Google Scholar 

  44. Song, X., Li, G., Vaage, J., & Valen, G. (2003). Effects of sex, gonadectomy, and oestrogen substitution on ischaemic preconditioning and ischemia-reperfusion injury in mice. Acta Physiologica Scandinavica, 177, 459–466.

    Article  PubMed  CAS  Google Scholar 

  45. Peng, W. J., Yu, J., Deng, S., Jiang, J. L., Deng, H. W., & Li, Y. J. (2004). Effect of estrogen replacement treatment on ischemic preconditioning in isolated rat hearts. Canadian Journal of Physiology and Pharmacology, 82, 339–344.

    Article  PubMed  CAS  Google Scholar 

  46. Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses health study. New England Journal of Medicine, 325, 756–762.

    Article  PubMed  CAS  Google Scholar 

  47. Wenger, N. K., Speroff, L., & Packard, B. (1993). Cardiovascular health and disease in women. New England Journal of Medicine, 329, 247–256.

    Article  PubMed  CAS  Google Scholar 

  48. Alexandersen, P., Tank′o, L. B., Bagger, Y. Z., Qin, G., & Christiansen, C. (2006). The long-term impact of 2–3 years of hormone replacement therapy on cardiovascular mortality and atherosclerosis in healthy women. Climacteric, 9, 108–118.

    Article  PubMed  CAS  Google Scholar 

  49. Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS). JAMA, 280, 605–613.

    Article  PubMed  CAS  Google Scholar 

  50. Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.

    Article  PubMed  Google Scholar 

  51. Rossouw, J. E., Andersen, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.

    Article  PubMed  CAS  Google Scholar 

  52. Hendrix, S. L., Wassertheil-Smoller, S., Johnson, K. C., Howard, B. V., Kooperberg, C., Rossouw, J. E., et al. (2006). Effects of conjugated equine estrogen on stroke in the Women’s Health Initiative. Circulation, 113, 2425–2434.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Andreadou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demerouti, E., Andreadou, I., Aggeli, IK. et al. Ovariectomy Reinstates the Infarct Size-Limiting Effect of Postconditioning in Female Rabbits. Cell Biochem Biophys 65, 373–380 (2013). https://doi.org/10.1007/s12013-012-9441-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9441-3

Keywords

Navigation