Skip to main content

Rapid and Biosecure Diagnostic Test for Tuberculosis

Abstract

Early and rapid detection of the causative organism is necessary in tuberculosis. We present here an integrated and dedicated molecular biology system for tuberculosis diagnosis. One hundred and eighty-nine (189) biologic specimens from patients strongly suspected by clinical parameters of tuberculosis were studied by Ziehl–Neelsen staining, cultivation on a solid medium, and by a balanced heminested fluorometric PCR system (Orange G3TB) that preserves worker safety and produces a rather pure material free of potential inhibitors. DNA amplification was carried out in a low cost using a tuberculosis thermocycler-fluorometer. The double stranded DNA produced is fluorometrically detected. The whole reaction is carried out in one single tube which is never opened after adding the processed sample, thus minimizing the risk of cross contamination with amplicons. The assay is able to detect 30 bacilli/ml of sample having a 99.8 % inter-assay coefficient of variation. PCR was positive in 36 (18.9 %) tested samples (33 of them were smear-negative). In our study, it yields a preliminary overall sensitivity of 97.4 %. In addition, its overall specificity is 98.7 %. The total run time of the test is 4 h with two and a half real working hours. All PCR-positive samples also had a positive result by microbiological culture and clinical criteria. The results obtained showed that it could be a very useful tool to increase efficiency in detecting the tuberculosis disease in low bacillus inoculum samples. Furthermore, its low cost and friendly usage make it feasible to be used in regions with poor development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ryan, F. (1992). The forgotten plague: how the battle against tuberculosis was won and lost. Boston: Little, Brown and Company. 3.

    Google Scholar 

  2. Dye, C., Watt, C. J., Bleed, D. M., Hosseini, S. M., & Raviglione, M. C. (2005). Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. Journal of the American MedicalAssociation, 293, 2767–2775.

    Article  CAS  Google Scholar 

  3. Boehme, C. C., Nabeta, P., Hillemann, D., Nicol, M. P., Shenai, S., Krapp, F., et al. (2009). Rapid molecular detection of tuberculosis and rifampin resistance. New England Journal of Medicine, 363(11), 1005–1015.

    Article  Google Scholar 

  4. Kehinde, A. O., Obaseki, F. A., Cadmus, S. I., & Bakare, R. A. (2005). Diagnosis of tuberculosis: urgent need to strengthen laboratory services. Journal of the National Medical Association, 97, 394–396.

    PubMed  Google Scholar 

  5. Kimerling, M. E. (2000). The Russian equation: an evolving paradigm in tuberculosis control. International Journal of Tuberculosis and Lung Disease, 4, S160–S167.

    PubMed  CAS  Google Scholar 

  6. Marras, T. K. (2003). Tuberculosis among Tibetan refugee claimants in Toronto, 1998–2000. Chest, 124, 915–921.

    Article  PubMed  Google Scholar 

  7. Moss, A. R. (2000). Tuberculosis in the homeless. A prospective study. American Journal of Respiratory and Critical Care Medicine, 162, 460–464.

    PubMed  CAS  Google Scholar 

  8. Reyes, H., & Coninx, R. (1997). Pitfalls of tuberculosis programmes in prisons. British Medical Journal, 315, 1447–1450.

    Article  PubMed  CAS  Google Scholar 

  9. Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2002). Micro-level estimation of poverty and inequality. Econometric, 71, 355–364.

    Article  Google Scholar 

  10. Evans, T. (Ed.). (2001). Challenging inequities in health: from ethics to action. Oxford: Oxford University Press.

    Google Scholar 

  11. Noordhoek, G. T., Kaan, J. A., Mulder, S., Wilke, H., & Kolk, A. H. (1995). Routine application of the polymerase chain reaction for detection of Mycobacterium tuberculosis in clinical samples. Journal of Clinical Pathology, 48, 810–814.

    Article  PubMed  CAS  Google Scholar 

  12. Watterson, S. A., & Drobniewski, F. A. (2000). Modern laboratory diagnosis of mycobacterial infections. Journal of Clinical Pathology, 53, 727–732.

    Article  PubMed  CAS  Google Scholar 

  13. Urdea, M., Penny, L. A., & Olmsted, S. S. (2006). Requirements for high impact diagnostics in the developing world. Nature, 444(Suppl 1), 73–79.

    Article  PubMed  Google Scholar 

  14. Raja, S., Ching, J., & Xi, L. (2005). Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clinical Chemistry, 51, 882–890.

    Article  PubMed  CAS  Google Scholar 

  15. Barnes, P. F. (1997). Rapid diagnostic tests for tuberculosis. Progress, but not gold standard. American Journal of Respiratory and Critical Care Medicine, 155, 1497–1498.

    PubMed  CAS  Google Scholar 

  16. Boehme, A., Nabeta, P., Henostroza, G., Raqib, R., Rahim, Z., Gerhardt, M., et al. (2007). Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. Journal of Clinical Microbiology, 45, 1936–1940.

    Article  PubMed  CAS  Google Scholar 

  17. Garberi, J., Labrador, J., Garberi, F., et al. (2011). Diagnosis of Mycobacterium tuberculosis using molecular biology technology. Asian Pacific Journal of Tropical Biomedicine, 2, 89–93.

    Article  Google Scholar 

  18. García-Quintanilla, A., Garcia, L., Tudó, G., Navarro, M., González, J. T., & Jiménez de Anta, M. T. (2000). Single-tube balanced heminested PCR for detecting Mycobacterium tuberculosis in smear-negative samples. Journal of Clinical Microbiology, 38, 1166–1169.

    PubMed  Google Scholar 

  19. Helb, D., Jones, M., Story, E., Boehme, C., Wallace, E., Ken, Ho, et al. (2010). Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use on on-demand, near patient technology. Journal of Clinical Microbiology, 48, 237–239.

    Article  Google Scholar 

  20. Blakemore, R., Story, E., Helb, D., Kop, J. A., Banada, P., Owens, M. R., et al. (2010). Evaluation of the analytical preformance of the Xpert MTB/RIF assay. Journal of Clinical Microbiology, 48, 2495–2501.

    Article  PubMed  CAS  Google Scholar 

  21. Dahle, U. R., Eldholm, V., Winje, B. A., Mannsaker, T., & Heldal, E. (2007). Impact of immigration on the molecular epidemiology of Mycobacterium tuberculosis in a low-incidence country. American Journal of Respiratory and Critical Care Medicine, 176, 930–935.

    Article  PubMed  Google Scholar 

  22. Mathema, B., Kurepina, N. E., Bifani, P. J., & Kreiswirth, B. N. (2006). Molecular epidemiology of tuberculosis: current insights. Clinical Microbiology Reviews, 19(4), 658–685.

    Article  PubMed  CAS  Google Scholar 

  23. Banada, P. B., Sivasubramani, S. K., Blakemore, R., Boehme, C., Perkins, M., Fennely, K., et al. (2010). Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. Journal of Clinical Microbiology, 48, 3351–3357.

    Article  Google Scholar 

  24. Bradley, S. P., Reed, S. L., & Catanzaro, A. (1996). Clinical efficacy of the amplified Mycobacterium tuberculosis direct test for the diagnosis of pulmonary tuberculosis. American Journal of Respiratory and Critical Care Medicine, 153, 1606.

    PubMed  CAS  Google Scholar 

  25. Schluger, N. W., Kinney, D., Harkin, T. J., & Rom, W. N. (1994). Clinical utility of the polymerase chain reaction in the diagnosis of infections due to Mycobacterium tuberculosis. Chest, 105, 1116.

    Article  PubMed  CAS  Google Scholar 

  26. Dalovisio, J. R., Montenegro-James, S., & Kemmerly, S. A. (1996). Comparison of the amplified Mycobacterium tuberculosis (MTB) direct test, Amplicor MTB PCR, and IS6110-PCR for detection of MTB in respiratory specimens. Clinical Infectious Diseases, 23, 1099.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Garberi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garberi, J., Labrador, J., Garberi, F. et al. Rapid and Biosecure Diagnostic Test for Tuberculosis. Cell Biochem Biophys 65, 173–179 (2013). https://doi.org/10.1007/s12013-012-9413-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9413-7

Keywords

  • Tuberculosis
  • Sputum
  • Cerebral spinal fluid
  • Pleural liquid
  • Molecular diagnosis
  • Low cost
  • Real-time PCR