Cell Biochemistry and Biophysics

, Volume 63, Issue 3, pp 223–234 | Cite as

An All-Atom Model of the Structure of Human Copper Transporter 1

  • Igor F. Tsigelny
  • Yuriy Sharikov
  • Jerry P. Greenberg
  • Mark A. Miller
  • Valentina L. Kouznetsova
  • Christopher A. Larson
  • Stephen B. Howell
Original Paper

Abstract

Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom model of this important transporter using the low resolution structure as a starting point. The all-atom model provides new insights into the roles of specific residues of the N-terminal extracellular domain, the intracellular loop, and C-terminal region in metal ion transport. In particular, the model demonstrates that the central region of the pore contains four sets of methionine triads in the intramembranous region. The structure confirms that two triads of methionine residues delineate the intramembranous region of the transporter, and further identifies two additional methionine triads that are located in the extracellular N-terminal part of the transporter. Together, the four triads create a structure that promotes stepwise transport of metal ions into and then through the intramembranous channel of the transporter via transient thioether bonds to methionine residues. Putative copper-binding sites in the hCTR1 trimer were identified by a program developed by us for prediction of metal-binding sites. These sites correspond well with the known effects of mutations on the ability of the protein to transport copper and cisplatin.

Keywords

CTR1 Molecular model Copper Cisplatin Transporter 

References

  1. 1.
    Puig, S., & Thiele, D. J. (2002). Molecular mechanisms of copper uptake and distribution. Current Opinion in Chemical Biology, 6, 171–180.PubMedCrossRefGoogle Scholar
  2. 2.
    Linder, M. C., & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. American Journal of Clinical Nutrition, 63, 797S–811S.PubMedGoogle Scholar
  3. 3.
    Howell, S. B., Safaei, R., Larson, C. A., & Sailor, M. J. (2010). Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Molecular Pharmacology, 77, 887–894.PubMedCrossRefGoogle Scholar
  4. 4.
    Crider, S. E., Holbrook, R. J., & Franz, K. J. (2010). Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1. Metallomics, 2, 74–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, X., Du, X., Li, H., Chan, D. S., & Sun, H. (2011). The effect of the extracellular domain of human copper transporter (hCTR1) on cisplatin activation. Angewandte Chemie (International ed. in English), 50, 2706–2711.CrossRefGoogle Scholar
  6. 6.
    Lin, X., Okuda, T., Holzer, A., & Howell, S. B. (2002). The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Molecular Pharmacology, 62, 1154–1159.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishida, S., Lee, J., Thiele, D. J., & Herskowitz, I. (2002). Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 14298–14302.PubMedCrossRefGoogle Scholar
  8. 8.
    Larson, C. A., Blair, B. G., Safaei, R., & Howell, S. B. (2009). The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs. Molecular Pharmacology, 75, 324–330.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, J., Pena, M. M., Nose, Y., & Thiele, D. J. (2002). Biochemical characterization of the human copper transporter Ctr1. The Journal of Biological Chemistry, 277, 4380–4387.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, J., Petris, M. J., & Thiele, D. J. (2002). Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter. The Journal of Biological Chemistry, 277, 40253–40259.PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang, J., Nadas, I. A., Alison Kim, M., Franz, K. J. (2005). A mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination. Inorganic Chemistry, 44, 9787–9794.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu, X., Sinani, D., Kim, H., & Lee, J. (2009). Copper transport activity of yeast Ctr1 is down regulated via its C-terminus in response to excess copper. The Journal of Biological Chemistry, 284, 4112–4122.PubMedCrossRefGoogle Scholar
  13. 13.
    Petris, M. J., Smith, K., Lee, J., & Thiele, D. J. (2003). Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. The Journal of Biological Chemistry, 278, 9639–9646.PubMedCrossRefGoogle Scholar
  14. 14.
    Holzer, A. K., & Howell, S. B. (2006). The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Research, 66, 10944–10952.PubMedCrossRefGoogle Scholar
  15. 15.
    Jandial, D. D., et al. (2009). Enhanced delivery of cisplatin to intraperitoneal ovarian carcinomas mediated by the effects of bortezomib on the human copper transporter 1. Clinical Cancer Research, 15, 553–560.PubMedCrossRefGoogle Scholar
  16. 16.
    Liang, Z. D., Stockton, D., Savaraj, N., & Kuo, M. T. (2009). Mechanistic comparison of human copper transporter hCtr1-mediated transports between copper ion and cisplatin. Molecular Pharmacology, 76, 843–853.PubMedCrossRefGoogle Scholar
  17. 17.
    Molloy, S. A., & Kaplan, J. H. (2009). Copper-dependent recycling of hCTR1, the human high affinity copper transporter. The Journal of Biological Chemistry, 284, 29704–29713.PubMedCrossRefGoogle Scholar
  18. 18.
    Holzer, A. K., Katano, K., Klomp, L. W., & Howell, S. B. (2004). Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clinical Cancer Research, 10, 6744–6749.PubMedCrossRefGoogle Scholar
  19. 19.
    Guo, Y., Smith, K., Lee, J., Thiele, D. J., & Petris, M. J. (2004). Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. The Journal of Biological Chemistry, 279, 17428–17433.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, J., Sitaram, A., & Burd, C. G. (2007). Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, ctr1p, by the rsp5 ubiquitin ligase. Traffic, 8, 1375–1384.PubMedCrossRefGoogle Scholar
  21. 21.
    Safaei, R., Maktabi, M. H., Blair, B. G., Larson, C. A., & Howell, S. B. (2009). Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. Journal of Inorganic Biochemistry, 103, 333–341.PubMedCrossRefGoogle Scholar
  22. 22.
    Aller, S. G., & Unger, V. M. (2006). Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proceedings of the National Academy of Sciences of the United States of America, 103, 3627–3632.PubMedCrossRefGoogle Scholar
  23. 23.
    De Feo, C. J., Aller, S. G., & Unger, V. M. (2007). A structural perspective on copper uptake in eukaryotes. BioMetals, 20, 705–716.PubMedCrossRefGoogle Scholar
  24. 24.
    De Feo, C. J., Aller, S. G., Siluvai, G. S., Blackburn, N. J., & Unger, V. M. (2009). Three-dimensional structure of the human copper transporter hCTR1. Proceedings of the National Academy of Sciences of the United States of America, 106, 4237–4242.PubMedCrossRefGoogle Scholar
  25. 25.
    Jia, Y., Dewey, T. G., Shindyalov, I. N., & Bourne, P. E. (2004). A new scoring function and associated statistical significance for structure alignment by CE. Journal of Computational Biology, 11(5), 787–799PubMedCrossRefGoogle Scholar
  26. 26.
    Chivian, D., & Baker, D. (2006). Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Research, 34, e112.PubMedCrossRefGoogle Scholar
  27. 27.
    Raman, S., et al. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 77(Suppl 9), 89–99.PubMedCrossRefGoogle Scholar
  28. 28.
    Sharikov, Y., Walker, R. C., Greenberg, J., Kouznetsova, V., Nigam, S. K., Miller, M. A., Masliah, E., & Tsigelny, I. F. (2008). MAPAS: A tool for predicting membrane-contacting protein surfaces. Nature Methods, 5, 119.PubMedCrossRefGoogle Scholar
  29. 29.
    Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5, 725–738.PubMedCrossRefGoogle Scholar
  30. 30.
    Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2011). A protocol for computer-based protein structure and function prediction (p. e3259). Journal of visualized experiments: JoVE.Google Scholar
  31. 31.
    Kale, L., et al. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151, 282–312.CrossRefGoogle Scholar
  32. 32.
    Feller, S. E., & MacKerell, A. D. (2000). An improved empirical potential energy function for molecular simulations of phospholipids. The Journal of Physical Chemistry B, 104, 7510–7515.CrossRefGoogle Scholar
  33. 33.
    Tu, K., Tobias, D. J., & Klein, M. L. (1995). Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophysical Journal, 69, 2558–2562.PubMedCrossRefGoogle Scholar
  34. 34.
    Feller, S., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: the Langevin piston method. Journal of Chemical Physics, 103, 4613–4621.CrossRefGoogle Scholar
  35. 35.
    Schushan, M., Barkan, Y., Haliloglu, T., & Ben-Tal, N. (2010). C(alpha)-trace model of the transmembrane domain of human copper transporter 1, motion and functional implications. Proceedings of the National Academy of Sciences of the United States of America, 107, 10908–10913.PubMedCrossRefGoogle Scholar
  36. 36.
    Haas, K. L., Putterman, A. B., White, D. R., Thiele, D. J., & Franz, K. J. (2011). Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via ctr1. Journal of the American Chemical Society, 133, 4427–4437.PubMedCrossRefGoogle Scholar
  37. 37.
    Himes, R. A., Park, G. Y., Barry, A. N., Blackburn, N. J., & Karlin, K. D. (2007). Synthesis and X-ray absorption spectroscopy structural studies of Cu(I) complexes of histidylhistidine peptides: The predominance of linear 2-coordinate geometry. Journal of the American Chemical Society, 129, 5352–5353.PubMedCrossRefGoogle Scholar
  38. 38.
    Rubino, J. T., Chenkin, M. P., Keller, M., Riggs-Gelascob, P., & Franz, K. J. (2011). A comparison of methionine, histidine and cysteine in copper(I)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments. Metallomics, 3, 61–73.CrossRefGoogle Scholar
  39. 39.
    Kim, B. E., Nevitt, T., & Thiele, D. J. (2008). Mechanisms for copper acquisition, distribution and regulation. Nature Chemical Biology, 4, 176–185.PubMedCrossRefGoogle Scholar
  40. 40.
    Rodriguez-Granillo, A., Crespo, A., Estrin, D. A., & Wittung-Stafshede, P. (2010). Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. The Journal of Physical Chemistry, 114, 3698–3706.PubMedGoogle Scholar
  41. 41.
    Eisses, J. F., & Kaplan, J. H. (2005). The mechanism of copper uptake mediated by human CTR1: A mutational analysis. Journal of Biological Chemistry, 280, 37159–37168.PubMedCrossRefGoogle Scholar
  42. 42.
    Puig, S., Lee, J., Lau, M., & Thiele, D. J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. Journal of Biological Chemistry, 277, 26021–26030.PubMedCrossRefGoogle Scholar
  43. 43.
    Eisses, J. F., & Kaplan, J. H. (2002). Molecular characterization of hCTR1, the human copper uptake protein. Journal of Biological Chemistry, 277, 29162–29171.PubMedCrossRefGoogle Scholar
  44. 44.
    Xiao, Z., & Wedd, A. G. (2002). A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chemical Communications (Cambridge, England), 2, 588–589.CrossRefGoogle Scholar
  45. 45.
    Esposito, D. L., Li, Y., Cama, A., & Quon, M. J. (2001). Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology, 142, 2833–2840.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu, H., Windmiller, D. A., Wang, L., & Backer, J. M. (2003). YXXM motifs in the PDGF-beta receptor serve dual roles as phosphoinositide 3-kinase binding motifs and tyrosine-based endocytic sorting signals. Journal of Biological Chemistry, 278, 40425–40428.PubMedCrossRefGoogle Scholar
  47. 47.
    Haas K. (2010). Copper at the interface of chemistry and biology: New insights into hCtr1 function and the role of histidine in human cellular copper acquisition. PhD dissertation, Duke University, Durham, NC.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Igor F. Tsigelny
    • 1
    • 2
  • Yuriy Sharikov
    • 1
  • Jerry P. Greenberg
    • 2
  • Mark A. Miller
    • 2
  • Valentina L. Kouznetsova
    • 2
    • 3
  • Christopher A. Larson
    • 3
  • Stephen B. Howell
    • 3
  1. 1.Department of NeurosciencesUniversity of California, San DiegoSan DiegoUSA
  2. 2.San Diego Supercomputer CenterUniversity of California, San DiegoSan DiegoUSA
  3. 3.Moores Cancer CenterUniversity of California, San DiegoLa JollaUSA

Personalised recommendations