Skip to main content

Advertisement

Log in

PTPIP51 in Protein Interactions: Regulation and In Situ Interacting Partners

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study investigated the regulation of 14-3-3β binding to PTPIP51 by the tyrosine phosphorylation status of PTPIP51. The tyrosine 176 residue is phosphorylated by c-Src. Up to now, nothing is known about the impact of such well-established phosphorylation events on the interaction profile of PTPIP51 with its partners of the mitogen-activated protein kinase (MAPK) pathway. In human keratinocytes the PTPIP51 phosphorylation was varied by inhibiting the phosphatase activity, thus enhancing the phosphorylation of PTPIP51. Differential blocking of Src kinase family members (despite c-Src) by PP2 increased the activity of c-Src and the tyrosine phosphorylation of PTPIP51 at position 176, which is the substrate of c-Src kinase. The amount of PTPIP51 interactions with 14-3-3β, Raf-1, PTP1B and c-Src was evaluated and the resulting data were compared to an untreated control group. The increased phosphorylation level resulted in a sharp drop of the 14-3-3β/PTPIP51 and 14-3-3β/Raf-1 interaction. Besides the 14-3-3 interaction of PTPIP51, the interaction with the two MAPK modulators, protein kinase A (PKA) and diacylglycerol kinase alpha (DAGKα), are also regulated by the tyrosine phosphorylation status of PTPIP51. Additional immunostaining experiments were done investigating the functional implication on these interactions of the phosphorylation in apoptotic processes. In the pervanadate- and PP2-treated HaCaT cells, higher amounts of apoptotic cells were not detected as compared to the control group. The presented data confirms a tyrosine phosphorylation-dependent interaction of PTPIP51 with 14-3-3β and Raf-1 in vivo and a tyrosine-dependent interaction profile with DAGKα and PKA. The non-interaction of PTPIP51 with 14-3-3 is not sufficient for triggering apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stenzinger, A., Schreiner, D., Koch, P., Hofer, H. W., & Wimmer, M. (2009). Cell and molecular biology of the novel protein tyrosine-phosphatase-interacting protein 51. International Review of Cell and Molecular Biology, 299(275), 183–246.

    Article  Google Scholar 

  2. Petri, M. K., Koch, P., Stenzinger, A., Kuchelmeister, K., Nestler, U., Paradowska, A., et al. (2011). PTPIP51, a positive modulator of the MAPK/Erk pathway, is upregulated in glioblastoma and interacts with 14-3-3β and PTP1B in situ. Histology and Histopathology, 26, 1531–1543.

    PubMed  CAS  Google Scholar 

  3. Bobrich, M., Brobeil, A., Mooren, F. C., Krüger, K., Steger, K., Tag, C., Wimmer, M. (2011). PTPIP51 interaction with PTP1B and 14-3-3β in adipose tissue of insulin-resistant mice. International Journal of Obesity. doi:10.1038/ijo.2010.283.

  4. Brobeil, A., Graf, M., Oeschger, S., Steger, K., & Wimmer, M. (2010). PTPIP51—a myeloid lineage specific protein interacts with PTP1B in neutrophil granulocytes. Blood Cells, Molecules, & Diseases, 45, 159–168.

    Article  CAS  Google Scholar 

  5. Brobeil, A., Bobrich, M., Graf, M., Kruchten, A., Blau, W., Rummel, M., et al. (2011). PTPIP51 is phosphorylated by Lyn and c-Src kinases lacking dephosphorylation by PTP1B in acute myeloid leukemia. Leukemia Research, 35, 1367–1375.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, C., Han, W., Shi, T., Lv, B., He, Q., Zhang, Y., et al. (2008). PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cellular Signalling, 20, 2208–2220.

    Article  PubMed  CAS  Google Scholar 

  7. Brobeil, A., Bobrich, M., & Wimmer, M. (2011). Protein tyrosine phosphatase interacting protein 51—a jack-of-all-trades protein. Cell and Tissue Research, 344, 189–205.

    Article  PubMed  CAS  Google Scholar 

  8. Häfner, S., Adler, H. S., Mischak, H., Janosch, P., Heidecker, G., Wolfman, A., et al. (1994). Mechanism of inhibition of Raf-1 by protein kinase A. Molecular and Cellular Biology, 14, 6696–6703.

    PubMed  Google Scholar 

  9. Mérida, I., Avila-Flores, A., & Merino, E. (2008). Diacylglycerol kinases: At the hub of cell signalling. Biochemistry Journal, 409, 1–18.

    Article  Google Scholar 

  10. Huyer, G., Liu, S., Kelly, J., Moffat, J., Payette, P., Kennedy, B., et al. (1997). Mechanism of inhibition of protein–tyrosine phosphatases by vanadate and pervanadate. Journal of Biological Chemistry, 272, 843–851.

    Article  PubMed  CAS  Google Scholar 

  11. Koch, P., Viard, M., Stenzinger, A., Brobeil, A., Tag, C., Steger, K., et al. (2009). Expression profile of PTPIP51 in mouse brain. The Journal of Comparative Neurology, 517, 892–905.

    Article  PubMed  CAS  Google Scholar 

  12. Yudushkin, I. A., Schleifenbaum, A., Kinkhabwala, A., Neel, B. G., Schultz, C., & Bastiaens, P. I. (2007). Live-cell imaging of enzyme–substrate interaction reveals spatial regulation of PTP1B. Science, 315, 115–119.

    Article  PubMed  CAS  Google Scholar 

  13. Galic, S., Hauser, C., Kahn, B. B., Haj, F. G., Neel, B. G., Tonks, N. K., et al. (2005). Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Molecular and Cellular Biology, 23, 819–829.

    Article  Google Scholar 

  14. Reiland, J., Ott, V. L., Lebakken, C. S., Yeaman, C., McCarthy, J., & Rapraeger, A. C. (1996). Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1. Biochemistry Journal, 319, 39–47.

    Google Scholar 

  15. Ewing, R. M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., et al. (2007). Large-scale mapping of human protein–protein interactions by mass spectrometry. Molecular Systems Biology, 3, 89.

    Article  PubMed  Google Scholar 

  16. Jin, J., Smith, F. D., Stark, C., Wells, C. D., Fawcett, J. P., Kulkarni, S., et al. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Current Biology, 14, 1436–1450.

    Article  PubMed  CAS  Google Scholar 

  17. Niemantsverdriet, M., Wagner, K., Visser, M., & Backendorf, C. (2008). Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene, 27, 1315–1319.

    Article  PubMed  CAS  Google Scholar 

  18. Hehner, S. P., Hofmann, T. G., Dröge, W., & Schmitz, M. L. (1999). Inhibition of tyrosine phosphatases induces apoptosis independent from the CD95 system. Cell Death and Differentiation, 6, 833–841.

    Article  PubMed  CAS  Google Scholar 

  19. Lv, B. F., Yu, C. F., Chen, Y. Y., Lu, Y., Guo, J. H., Song, Q. S., et al. (2006). Protein tyrosine phosphatase interacting protein 51 (PTPIP51) is a novel mitochondria protein with an N-terminal mitochondrial targeting sequence and induces apoptosis. Apoptosis, 11, 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  20. Horiuchi, K. Y., Wang, Y., Diamond, S. L., & Ma, H. (2006). Microarrays for the functional analysis of the chemical-kinase interactome. Journal of Biomolecular Screening, 11, 48–56.

    Article  PubMed  CAS  Google Scholar 

  21. Kilarski, W. W., Jura, N., & Gerwins, P. (2003). Inactivation of Src family kinases inhibits angiogenesis in vivo: Implications for a mechanism involving organization of the actin cytoskeleton. Experimental Cell Research, 291, 70–82.

    Article  PubMed  CAS  Google Scholar 

  22. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., et al. (1996). Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. Journal of Biological Chemistry, 271, 695–701.

    Article  PubMed  CAS  Google Scholar 

  23. Biscardi, J. S., Maa, M. C., Tice, D. A., Cox, M. E., Leu, T. H., & Parsons, S. J. (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. Journal of Biological Chemistry, 274, 8335–8343.

    Article  PubMed  CAS  Google Scholar 

  24. Tice, D. A., Biscardi, J. S., Nickles, A. L., & Parsons, S. J. (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. The Proceedings of the National Academy of Sciences of the United States of America, 96, 1415–1420.

    Article  CAS  Google Scholar 

  25. Kraft, C. A., Garrido, J. L., Fluharty, E., Leiva-Vega, L., & Romero, G. (2008). Role of phosphatidic acid in the coupling of the ERK cascade. Journal of Biological Chemistry, 283, 36636–36645.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. M. Bodenbenner, Ms. S. Gombert and Mr. M. Ivo (Institute of Anatomy and Cell Biology, Giessen) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Brobeil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brobeil, A., Bobrich, M., Tag, C. et al. PTPIP51 in Protein Interactions: Regulation and In Situ Interacting Partners. Cell Biochem Biophys 63, 211–222 (2012). https://doi.org/10.1007/s12013-012-9357-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9357-y

Keywords

Navigation