Skip to main content
Log in

Biological Characteristics and Effect of Human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) Grafting with Blood Plasma on Bone Regeneration in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We evaluated the biological characteristics/effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rat tibia nonunion. SD rats (142) were randomly divided into four groups: fracture group (positive control); nonunion group (negative control); hUC-MSCs grafting with blood plasma group; and hUC-MSCs grafting with saline group. Rats were administered tetracycline (30 mg/kg) and calcein blue (5 mg/kg) 8 days before killing. The animals were killed under deep anesthesia at 4 and 8 weeks post fracture for radiological evaluation and histological/immunohistological studies. The hUC-MSCs grafting with blood plasma group was similar to fracture group: the fracture line blurred in 4 weeks and disappeared in 8 weeks postoperatively. Histological/immunohistological studies showed that hUC-MSCs were of low immunogenicity which merged in rat bone tissue, differentiated into osteogenic lineages, and completed the healing of nonunion. After stem cell transplantation, regardless of whether plasma or saline was used, new multi-center bone formation was observed; fracture site density was better in stem cell grafting with blood plasma group. We, therefore, concluded that the biological characteristics of hUC-MSCs-treated nonunion were different from the standard fracture healing process, and the proliferative and localization capacity of hUC-MSCs might benefit from the use of blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einhorn, T. A. (1995). Enhancement of fracture healing. Journal of Bone and Joint Surgery, 77, 940–956.

    PubMed  CAS  Google Scholar 

  2. Coles, C. P., & Gross, M. (2000). Closed tibial shaft fractures: Management and treatment complications. A review of the prospective literature. Canadian Journal of Surgery, 43, 256–262.

    CAS  Google Scholar 

  3. Hadjiargyrou, M., Ahrens, W., & Rubin, C. T. (2000). Temporal expression of the chondrogenic and angiogenic growth factor CYR61 during fracture repair. Journal of Bone and Mineral Research, 15, 1014–1023.

    Article  PubMed  CAS  Google Scholar 

  4. Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3, 192–195.

    Article  PubMed  CAS  Google Scholar 

  5. Grundel, R., Chapman, M., Yee, T., & Moore, D. C. (1991). Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna. Clinical Orthopedics and Related Research, 266, 244–258.

    Google Scholar 

  6. Werntz, J., Lane, J., Burstein, A., Justin, R., Klein, R., & Tomin, E. (1996). Qualitative and quantitative analysis of orthotopic bone regeneration by marrow. Journal of Orthopedic Research, 14, 85–93.

    Article  CAS  Google Scholar 

  7. Muschler, G. F., Hiromori, N., Matsukura, Y., et al. (2003). Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clinical Orthopedics and Related Research, 407, 102–118.

    Article  Google Scholar 

  8. Arinzeh, T. L., Peter, S. J., Archambault, M. P., et al. (2003). Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. Journal of Bone and Joint Surgery, 85-A, 1927–1935.

    PubMed  Google Scholar 

  9. Bruder, S. P., Kurth, A. A., Shea, M., Hayes, W. C., Jaiswal, N., & Kadiyala, S. (1998). Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. Journal of Orthopedic Research, 16, 155–162.

    Article  CAS  Google Scholar 

  10. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multi-lineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50–60.

    Article  PubMed  CAS  Google Scholar 

  12. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  13. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.

    Article  PubMed  Google Scholar 

  14. Qu, Z. G., Mi, S. F., & Fang, G. J. (2009). Clinical study on treatment of bone nonunion with MSCs derived from human umbilical cord. Chinese Journal of Reparative and Reconstructive Surgery, 23(3), 345–347 (in Chinese).

    Google Scholar 

  15. Mariane, S., Yuri, B. M., Eder, Z., et al. (2009). Gene expression profile of mesenchymal stem cells from paired umbilical cord units: Cord is different from blood. Stem Cell Review, 5, 387–401.

    Article  Google Scholar 

  16. Qu, Z. G., Liu, Y., Guo, L., et al. (2009). Percutaneous radiological autologous bone-marrow mesenchymal stem cells grafting integrating with blood plasma by injection in the part of thigh fracture: Seven-month follow-up effect evaluation in one case. Journal of Clinical Rehabilitative Tissue Engineering Research, 13, 7393–7396.

    Google Scholar 

  17. Wang, C. J., Iida, K., Egusa, H., Hokugo, A., Jewett, A., & Nishimura, I. (2008). Trabecular bone deterioration in col9a1 ± mice associated with enlarged osteoclasts adhered to collagen IX–deficient bone. Journal of Bone and Mineral Research, 23, 837–849.

    Article  PubMed  CAS  Google Scholar 

  18. Kratzel, C., Bergmann, C., Duda, G., Greiner, S., Schmidmaier, G., & Wildemann, B. (2008). Characterization of a rat osteotomy model with impaired healing. BMC Musculoskeletal Disorders, 9, 135.

    Article  PubMed  Google Scholar 

  19. Ren, H. Y., Zhao, Q. J., Xing, W., et al. (2010). Differentiation of human umbilical cord derived mesenchymal stem cells into low immunogenic and functional hepatocyte-like cells in vitro. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 32, 190–194.

    PubMed  Google Scholar 

  20. Tipnis, S., Viswanathan, C., & Majumdar, A. S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunology and Cell Biology, 88, 795–806.

    Article  PubMed  Google Scholar 

  21. Chen, K., Wang, D., Du, W. T., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135, 448–458.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the cord blood donors as well as hospital support staff for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Z., Guo, L., Fang, G. et al. Biological Characteristics and Effect of Human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) Grafting with Blood Plasma on Bone Regeneration in Rats. Cell Biochem Biophys 63, 171–181 (2012). https://doi.org/10.1007/s12013-012-9354-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9354-1

Keywords

Navigation