Biochemical Changes in Rat Brain Exposed to Low Intensity 9.9 GHz Microwave Radiation

Abstract

Present study concerns with various biochemical changes in the developing rat brain exposed to 9.9 GHz (square wave modulated, 1 kHz) at power density 0.125 mW/cm2 (specific absorption rate 1.0 W/kg) for 2 h/day for 35 days. Thirty days old male wistar rats were used for this present study. Each group consists of eight animals. After the exposure, biochemical assays such as calcium ion efflux, calcium-dependent protein kinase (PKC), and ornithine decarboxylase (ODC) were performed on the brain tissue. Results of this study reveal that chronic exposure of rat to microwave radiation alter the activity of certain enzymes. There was a significant increase in calcium ion efflux and the activity of ODC. On the other hand, there is a significant decrease in PKC activity. Since these enzymes are related to growth, any alteration may lead to affect functioning of the brain and its development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kumlin, T., Iivonen, H., Miettinen, P., Juvonen, A., van Groen, T., Puranen, L., et al. (2007). Mobile phone radiation and the developing brain: Behavioral and morphological effects in juvenile rats. Radiation Research, 168(4), 471–479.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Ilhan, A., Gurel, A., Armutcu, F., Kamisli, S., Iraz, M., Akyol, O., et al. (2004). Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clinica Chimica Acta, 340(1–2), 153–162.

    Article  CAS  Google Scholar 

  3. 3.

    Lantow, M., Viergutz, T., Weiss, D. G., & Simkó, M. (2006). Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiation Research, 166(3), 539–543.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Utteridge, T. D., Gebski, V., Finnie, J. W., Vernon-Roberts, B., & Kuchel, T. R. (2002). Long-term exposure of E-mu-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiation Research, 158(3), 357–364.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Vijayalaxmi, Leal, B. Z., Szilagyi, M., Prihoda, T. J., & Meltz, M. L. (2000). Primary DNA damage in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Radiation Research, 153, 479–486.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Dasdag, S., Akdag, M. Z., Ulukaya, E., Uzunlar, A. K., & Ocak, A. R. (2009). Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagnetic Biology and Medicine, 28(4), 342–354.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., & House, D. E. (1979). Induction of calcium ion efflux from brain tissue by radio-frequency radiation: Effects of modulation frequency and field strength. Radio Science, 14, 93–98.

    Article  CAS  Google Scholar 

  8. 8.

    D’Inzeo, G., Bernardi, P., Eusebi, F., Grassi, F., Tamburello, C., & Zani, B. M. (1988). Microwave effects on acetylcholine-induced channels in cultured chick myotubes. Bioelectromagnetics, 9, 363–372.

    PubMed  Article  Google Scholar 

  9. 9.

    Bawin, S. M., Adey, W. R., & Sabbot, I. M. (1978). Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. PNAS, 75(12), 6314–6318.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Paulraj, R. & Behari, J. (2002). The effect of low level continuous 2.45 GHz wave on brain enzymes of developing rat brain. Electromagnetic biology and Medicine, 21(3) 221–231.

    Google Scholar 

  11. 11.

    Byus, C. V., Lundak, R. L., Fletcher, R. M., & Adey, W. R. (1984). Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics, 5, 341–351.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Paulraj, R., & Behari, J. (2006). Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagnetic Biology and Medicine, 25, 61–70.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Ray, S., & Behari, J. (1990). Physiological changes in rats after exposure to low levels of microwaves. Radiation Research, 125, 199–201.

    Article  Google Scholar 

  14. 14.

    Durney, C. H., Massoudi, H., & Iskander, M. F. (1986). Radiofrequency radiation dosimetry handbook (4th ed.), Salt Lake City, (p. 6.16). Report USAFSAM-TR-85-73, USAF School of Aerospace Medicine, Brooks AFB, TX.

  15. 15.

    Gandhi, O. P., Lazzi, G., Tinniswood, A., & Yu, Q. (1999). Comparison of numerical and experimental methods for determination of SAR and radiation patterns of handheld wireless telephones. Bioelectromagnetics, 20, 93–101.

    Article  Google Scholar 

  16. 16.

    Blackman, C. F, Benane, S. G., Kinney, L. S., Joines, W. T., & House, D. E. (1982) Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research, 92(3), 510–520.

    Google Scholar 

  17. 17.

    Havrankova, J., Roth, J., & Brownstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272(5656), 827–829.

    Google Scholar 

  18. 18.

    Lowry, O. H., Rosenbergh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin–phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  19. 19.

    Hetherington, A., & Trewavas, A. (1982). Calcium dependent protein kinase in pea shoot membranes. FEBS Letters, 145, 67–71.

    Article  CAS  Google Scholar 

  20. 20.

    Wu, V. S., Donato, N. J., & Byus, C. V. (1981). Growth state-dependent alterations in the ability of 12-O-tetradeconoylphorbol-13-acetate to increase ornithine decarboxylase activity in Reuber H35 hepatoma cells. Cancer Research, 41, 3384–3391.

    PubMed  CAS  Google Scholar 

  21. 21.

    Paulraj, R. & Behari, J. (2011). Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice. Molecular and Cellular Biochemistry, 348(1–2), 191–197.

    Google Scholar 

  22. 22.

    Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86, 334–343.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Malyapa, R. S., Ahern, E. W., Bi, C., Straube, W. L., LaRegina, M., Pickard, W. F., et al. (1998). DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiation Research, 149(6), 637–645.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Bawin, S. M., Kaczmark, L. K., & Adey, W. R. (1975). Effect of modulated VLF fields on the central nervous system. Annals of the New York Academy of Sciences, 247(1975), 74–81.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Byus, C. V., Kartun, K., Pieper, S. E., & Adey, W. R. (1988). Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Research, 48, 4222–4226.

    PubMed  CAS  Google Scholar 

  26. 26.

    Butler, A. P., Mar, P. K., McDonald, F. F., & Ramsay, R. L. (1991). Involvement of protein kinase C in the regulation of ornithine decarboxylase mRNA by phorbol esters in rat hepatoma cells. Experimental Cell Research, 194, 56–61.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Penafiel, L. M., Litovitz, T., Krause, D., Desta, A., & Mullins, J. M. (1997). Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics, 18, 132–141.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Byus, C. V., Pieper, S. E., & Adey, W. R. (1987). The effects of low-energy 60 Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis, 8, 1385–1389.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Lai, H., & Singh, N. P. (1996). Single and double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation. International Journal of Radiation Biology, 69, 513–521.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Behari, J. (2010). Biological correlates of low level electromagnetic-field exposure. In B. Ballantyne, T. C. Marrs, L. M. Tore, & T. Syversen (Eds.) General and Applied Toxicology (pp. 1–24), vol. 5, chap. 106. Chichester: Wiley.

  32. 32.

    Litovitz, T. A., Krause, D., Penafiel, M., Edward, C. E., & Mullins, J. M. (1993). The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics, 14, 395–403.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Behari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paulraj, R., Behari, J. Biochemical Changes in Rat Brain Exposed to Low Intensity 9.9 GHz Microwave Radiation. Cell Biochem Biophys 63, 97–102 (2012). https://doi.org/10.1007/s12013-012-9344-3

Download citation

Keywords

  • Radio frequency
  • Ornithine decarboxylase
  • Protein kinase C
  • Calcium efflux