Cell Biochemistry and Biophysics

, Volume 63, Issue 1, pp 97–102 | Cite as

Biochemical Changes in Rat Brain Exposed to Low Intensity 9.9 GHz Microwave Radiation

Original Paper

Abstract

Present study concerns with various biochemical changes in the developing rat brain exposed to 9.9 GHz (square wave modulated, 1 kHz) at power density 0.125 mW/cm2 (specific absorption rate 1.0 W/kg) for 2 h/day for 35 days. Thirty days old male wistar rats were used for this present study. Each group consists of eight animals. After the exposure, biochemical assays such as calcium ion efflux, calcium-dependent protein kinase (PKC), and ornithine decarboxylase (ODC) were performed on the brain tissue. Results of this study reveal that chronic exposure of rat to microwave radiation alter the activity of certain enzymes. There was a significant increase in calcium ion efflux and the activity of ODC. On the other hand, there is a significant decrease in PKC activity. Since these enzymes are related to growth, any alteration may lead to affect functioning of the brain and its development.

Keywords

Radio frequency Ornithine decarboxylase Protein kinase C Calcium efflux 

References

  1. 1.
    Kumlin, T., Iivonen, H., Miettinen, P., Juvonen, A., van Groen, T., Puranen, L., et al. (2007). Mobile phone radiation and the developing brain: Behavioral and morphological effects in juvenile rats. Radiation Research, 168(4), 471–479.PubMedCrossRefGoogle Scholar
  2. 2.
    Ilhan, A., Gurel, A., Armutcu, F., Kamisli, S., Iraz, M., Akyol, O., et al. (2004). Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clinica Chimica Acta, 340(1–2), 153–162.CrossRefGoogle Scholar
  3. 3.
    Lantow, M., Viergutz, T., Weiss, D. G., & Simkó, M. (2006). Comparative study of cell cycle kinetics and induction of apoptosis or necrosis after exposure of human Mono Mac 6 cells to radiofrequency radiation. Radiation Research, 166(3), 539–543.PubMedCrossRefGoogle Scholar
  4. 4.
    Utteridge, T. D., Gebski, V., Finnie, J. W., Vernon-Roberts, B., & Kuchel, T. R. (2002). Long-term exposure of E-mu-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiation Research, 158(3), 357–364.PubMedCrossRefGoogle Scholar
  5. 5.
    Vijayalaxmi, Leal, B. Z., Szilagyi, M., Prihoda, T. J., & Meltz, M. L. (2000). Primary DNA damage in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Radiation Research, 153, 479–486.PubMedCrossRefGoogle Scholar
  6. 6.
    Dasdag, S., Akdag, M. Z., Ulukaya, E., Uzunlar, A. K., & Ocak, A. R. (2009). Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagnetic Biology and Medicine, 28(4), 342–354.PubMedCrossRefGoogle Scholar
  7. 7.
    Blackman, C. F., Elder, J. A., Weil, C. M., Benane, S. G., Eichinger, D. C., & House, D. E. (1979). Induction of calcium ion efflux from brain tissue by radio-frequency radiation: Effects of modulation frequency and field strength. Radio Science, 14, 93–98.CrossRefGoogle Scholar
  8. 8.
    D’Inzeo, G., Bernardi, P., Eusebi, F., Grassi, F., Tamburello, C., & Zani, B. M. (1988). Microwave effects on acetylcholine-induced channels in cultured chick myotubes. Bioelectromagnetics, 9, 363–372.PubMedCrossRefGoogle Scholar
  9. 9.
    Bawin, S. M., Adey, W. R., & Sabbot, I. M. (1978). Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. PNAS, 75(12), 6314–6318.PubMedCrossRefGoogle Scholar
  10. 10.
    Paulraj, R. & Behari, J. (2002). The effect of low level continuous 2.45 GHz wave on brain enzymes of developing rat brain. Electromagnetic biology and Medicine, 21(3) 221–231.Google Scholar
  11. 11.
    Byus, C. V., Lundak, R. L., Fletcher, R. M., & Adey, W. R. (1984). Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics, 5, 341–351.PubMedCrossRefGoogle Scholar
  12. 12.
    Paulraj, R., & Behari, J. (2006). Protein kinase C activity in developing rat brain cells exposed to 2.45 GHz radiation. Electromagnetic Biology and Medicine, 25, 61–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Ray, S., & Behari, J. (1990). Physiological changes in rats after exposure to low levels of microwaves. Radiation Research, 125, 199–201.CrossRefGoogle Scholar
  14. 14.
    Durney, C. H., Massoudi, H., & Iskander, M. F. (1986). Radiofrequency radiation dosimetry handbook (4th ed.), Salt Lake City, (p. 6.16). Report USAFSAM-TR-85-73, USAF School of Aerospace Medicine, Brooks AFB, TX.Google Scholar
  15. 15.
    Gandhi, O. P., Lazzi, G., Tinniswood, A., & Yu, Q. (1999). Comparison of numerical and experimental methods for determination of SAR and radiation patterns of handheld wireless telephones. Bioelectromagnetics, 20, 93–101.CrossRefGoogle Scholar
  16. 16.
    Blackman, C. F, Benane, S. G., Kinney, L. S., Joines, W. T., & House, D. E. (1982) Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research, 92(3), 510–520.Google Scholar
  17. 17.
    Havrankova, J., Roth, J., & Brownstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272(5656), 827–829.Google Scholar
  18. 18.
    Lowry, O. H., Rosenbergh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin–phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  19. 19.
    Hetherington, A., & Trewavas, A. (1982). Calcium dependent protein kinase in pea shoot membranes. FEBS Letters, 145, 67–71.CrossRefGoogle Scholar
  20. 20.
    Wu, V. S., Donato, N. J., & Byus, C. V. (1981). Growth state-dependent alterations in the ability of 12-O-tetradeconoylphorbol-13-acetate to increase ornithine decarboxylase activity in Reuber H35 hepatoma cells. Cancer Research, 41, 3384–3391.PubMedGoogle Scholar
  21. 21.
    Paulraj, R. & Behari, J. (2011). Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice. Molecular and Cellular Biochemistry, 348(1–2), 191–197.Google Scholar
  22. 22.
    Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86, 334–343.PubMedCrossRefGoogle Scholar
  23. 23.
    Malyapa, R. S., Ahern, E. W., Bi, C., Straube, W. L., LaRegina, M., Pickard, W. F., et al. (1998). DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiation Research, 149(6), 637–645.PubMedCrossRefGoogle Scholar
  24. 24.
    Bawin, S. M., Kaczmark, L. K., & Adey, W. R. (1975). Effect of modulated VLF fields on the central nervous system. Annals of the New York Academy of Sciences, 247(1975), 74–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Byus, C. V., Kartun, K., Pieper, S. E., & Adey, W. R. (1988). Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Research, 48, 4222–4226.PubMedGoogle Scholar
  26. 26.
    Butler, A. P., Mar, P. K., McDonald, F. F., & Ramsay, R. L. (1991). Involvement of protein kinase C in the regulation of ornithine decarboxylase mRNA by phorbol esters in rat hepatoma cells. Experimental Cell Research, 194, 56–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Penafiel, L. M., Litovitz, T., Krause, D., Desta, A., & Mullins, J. M. (1997). Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics, 18, 132–141.PubMedCrossRefGoogle Scholar
  28. 28.
    Byus, C. V., Pieper, S. E., & Adey, W. R. (1987). The effects of low-energy 60 Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis, 8, 1385–1389.PubMedCrossRefGoogle Scholar
  29. 29.
    Lai, H., & Singh, N. P. (1996). Single and double strand breaks in rats brain cells after acute exposure to radio frequency electromagnetic radiation. International Journal of Radiation Biology, 69, 513–521.PubMedCrossRefGoogle Scholar
  30. 30.
    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Behari, J. (2010). Biological correlates of low level electromagnetic-field exposure. In B. Ballantyne, T. C. Marrs, L. M. Tore, & T. Syversen (Eds.) General and Applied Toxicology (pp. 1–24), vol. 5, chap. 106. Chichester: Wiley.Google Scholar
  32. 32.
    Litovitz, T. A., Krause, D., Penafiel, M., Edward, C. E., & Mullins, J. M. (1993). The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics, 14, 395–403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations