Cell Biochemistry and Biophysics

, Volume 63, Issue 1, pp 85–96 | Cite as

Steroidal Metabolites Transformed by Marchantia polymorpha Cultures Block Breast Cancer Estrogen Biosynthesis

  • Mohamed-Elamir F. HegazyEmail author
  • Amira M. Gamal-Eldeen
  • Ali M. El-Halawany
  • Abou El-Hamd H. Mohamed
  • Paul W. Paré
Original Paper


Suspension of cultured cells of Marchantia polymorpha have the potential to hydrogenate the olefinic bonds present in androst-1,4-dien-3,17-dione (boldione, 1) to afford dihydroandrost-3,17-dione derivatives including: androst-4-ene-3,17-dione (androstenedione, 4-AD, 2), 5α-androstane-3,17-dione (androstenedione, AD, 4), and the less abundant metabolite 5α-androst-1-ene-3,17-dione (1-androstenedione, 1-AD, 3). After isolation and purification, these metabolites were characterized on the basis of spectroscopic analyses using 1D and 2D NMR as well as mass spectrometry. Cytotoxicity of the biotransformation products against breast adenocarcinoma cells (MCF-7) was assessed by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and cell death (apoptosis or necrosis) was assayed by acridine orange/ethidium bromide staining. Aromatase (cytochrome P450 19 enzyme, CYP19) inhibitory activity was measured by a tritiated water release assay and by direct measurement of bio-transformed steroids using the tritium labeled substrate 3H-androst-4-ene-3,17-dione. CYP19 mRNA expression in MCF-7 cells was analyzed by real-time PCR. Steroidal products 3 and 4 revealed a highly significant inhibition of MCF-7 cell growth that was predominantly due to apoptosis not necrosis. Steroidal products 3 and 4 are both potent inhibitors of aromatase activity and CYP19 mRNA expression, while 2 is a known substrate for aromatase. These data establish that metabolites 3 and 4 are potent chemical agents against breast cancer via aromatase inhibitory mechanism. Results were interpreted via virtual docking of the biotransformation products to the human placental aromatase active site.


Cultured plant cells Hydrogenation Androst-1,4-dien-3,17-dione Anticancer activity Aromatase inhibitory activity 



This study was funded by the National Research Center, Cairo, Egypt.


  1. 1.
    Sedlaczek, L. (1988). Biotransformation of steroids. CRC Critical Reviews in Biotechnology, 7, 187–236.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhi, F. W., Yu, L. H., James, R. F., & Shang-Tian, Y. (2002). Lecithin-enhanced biotransformation of cholesterol to androst-1,4-diene-3,17-dione and androst-4-ene-3,17-dione. Journal of Chemical Technology and Biotechnology, 77, 1349–1357.CrossRefGoogle Scholar
  3. 3.
    Hirata, T., Takarada, A., Hegazy, M., Sato, Y., et al. (2005). Hydrogenation of the C–C double bond of maleimides with cultured plant cells. Journal of Molecular Catalysis B, 32, 131–134.CrossRefGoogle Scholar
  4. 4.
    Hegazy, M.-E. F., Hirata, T., Abdel-Lateff, A., et al. (2008). Ketoisophorone transformation by Marchantia polymorpha and Nicotiana tabacum cultured cells. Zeitschrift fuer Naturforschung, C, 63c, 403–408.Google Scholar
  5. 5.
    Hesselink, P. G. M., van Vliet, S., de Vries, H., & Witholt, B. (1989). Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme and Microbial Technology, 11, 398–404.CrossRefGoogle Scholar
  6. 6.
    Hu, S.-h., & Azerad, G. R. (1995). Microbial transformation of steroids: Contribution to 14α-hydroxylations. Steroids, 60, 337–352.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, Z., Zhao, F., Hao, X., Chen, D., & Li, D. (2004). Microbial transformation of hydrophobic compound in cloud point system. Journal of Molecular Catalysis B, 27, 147–153.CrossRefGoogle Scholar
  8. 8.
    Dutta, T. K., & Samanta, B. (1997). Novel catalytic activity of immobilized spores under reduced water activity. Bioorganic and Medicinal Chemistry Letters, 7, 629–632.CrossRefGoogle Scholar
  9. 9.
    Faramarzi, M. A., Yazdi, M. T., Jahandar, H., Amini, M., & Monsef-Esfahani, H. R. (2006). Studies on the microbial transformation of androst-1,4-dien-3,17-dione with Acremonium strictum. Journal of Industrial Microbiology and Biotechnology, 33, 725–733.PubMedCrossRefGoogle Scholar
  10. 10.
    Labrie, F., Luu-The, V., Lin, S. X., Simard, J., Labrie, C., El-Alfy, M., et al. (2000). Intracrinology: Role of the family of 17 betahydroxysteroid dehydrogenases in human physiology and disease. Journal of Molecular Endocrinology, 25, 1–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu, B. T., & Conney, A. H. (1998). Functional role of estrogen metabolism in target cells: Review and perspectives. Carcinogenesis, 19, 1–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Bagchi, S. (2007). Men with breast cancer have high risk of second cancer. The Lancet Oncology, 8, 198.PubMedCrossRefGoogle Scholar
  13. 13.
    Ju, Y. H., Doerge, D. R., Woodling, K. A., Hartman, J. A., Kwak, J., & Helferich, W. G. (2008). Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis, 29, 2162–2168.PubMedCrossRefGoogle Scholar
  14. 14.
    Harlan, L. C., Abrams, J., Warren, J. L., Clegg, L., Stevens, J., & Ballard-Barbash, R. (2002). Adjuvant therapy for breast cancer: Practice patterns of community physicians. Journal of Clinical Oncology, 20, 1809–1817.PubMedCrossRefGoogle Scholar
  15. 15.
    Howell, A., & Locker, G. Y. (2005). Defining the roles of aromatase inhibitors in the adjuvant treatment of early-stage breast cancer. Clinical Breast Cancer, 6, 302–309.PubMedCrossRefGoogle Scholar
  16. 16.
    Simpson, E. R. (2000). Biology of aromatase in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 5, 251–258.PubMedCrossRefGoogle Scholar
  17. 17.
    Parker, C. R. J., Slayden, S. M., Azziz, R., Crabbe, S. L., Hines, G. A., Boots, L. R., et al. (2000). Effects of aging on adrenal function in the human: Responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. The Journal of Clinical Endocrinology and Metabolism, 85, 48–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Bulun, S. E., Zeitoun, K., Sasano, H., & Simpson, E. R. (1999). Aromatase in aging women. Seminars in Reproductive Endocrinology, 17, 349–358.PubMedGoogle Scholar
  19. 19.
    James, V. H., McNeill, J. M., Lai, L. C., Newton, C. J., Ghilchik, M. W., & Reed, M. J. (1987). Aromatase activity in normal breast and breast tumor tissues: In vivo and in vitro studies. Steroids, 50, 269–279.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu, Q., Nakmura, J., Savinov, A., Yue, W., Weisz, J., Dabbs, D. J., et al. (1996). Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancers. Endocrinology, 137, 3061–3068.PubMedCrossRefGoogle Scholar
  21. 21.
    Bhatnagar, A. S., Brodie, A. M., Long, B. J., Evans, D. B., & Miller, W. R. (2001). Intracellular aromatase and its relevance to the pharmacological efficacy of aromatase inhibitors. The Journal of Steroid Biochemistry and Molecular Biology, 76, 199–202.PubMedCrossRefGoogle Scholar
  22. 22.
    Cuzick, J. (2003). Aromatase inhibitors in prevention—data from the ATAC (arimidex, tamoxifen alone or in combination) trial and the design of IBIS-II (the second International Breast Cancer Intervention Study). Recent Results in Cancer Research, 163, 96–103.PubMedCrossRefGoogle Scholar
  23. 23.
    Coombes, R. C., Hall, E., Gibson, L. J., et al. (2004). A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. The New England Journal of Medicine, 350, 1081–1092.PubMedCrossRefGoogle Scholar
  24. 24.
    Howell, A., Cuzick, J., Baum, M., et al. (2005). ATAC Trialists’ Group, results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365, 60–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Herold, C. I., & Blackwell, K. L. (2008). Aromatase inhibitors for breast cancer: Proven efficacy across the spectrum of disease. Clinical Breast Cancer, 8, 50–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Ono, K., Ohyama, K., & Gamborg, O. L. (1979). Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Science Letters, 14, 225–229.CrossRefGoogle Scholar
  27. 27.
    Katoh, K., Ishikawa, M., Miyake, K., Ohta, Y., Hirose, Y., & Iwamura, T. (1980). Nutrient utilization and requirement under photoheterotrophic growth of Marchantia polymorpha: Improvement of the culture medium. Physiologia Plantarum, 49, 241–247.CrossRefGoogle Scholar
  28. 28.
    Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods, 119, 203–210.PubMedCrossRefGoogle Scholar
  29. 29.
    Sun, X.-Z., Zhou, D., & Chen, S. (1997). Autocrine and paracrine actions of breast aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. The Journal of Steroid Biochemistry and Molecular Biology, 63, 29–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., et al. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Grube, B. J., Eng, E. T., Kao, Y.-C., Kwon, A., & Chen, S. (2001). White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. Journal of Nutrition, 131, 3288–3293.PubMedGoogle Scholar
  32. 32.
    Giuliett, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., & Mathieu, C. (2001). An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 25, 386–401.CrossRefGoogle Scholar
  33. 33.
    Wang, Y., Chan, F. L., Chen, S., & Leung, L. K. (2005). The plant polyphenol butein inhibits testosterone-induced proliferation in breast cancer cells expressing aromatase. Life Sciences, 77, 39–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Blunt, J. W., & Stothers, J. B. (1977). 13C-NMR spectra of steroids—a survey and commentary. Organic Magnetic Resonance, 9, 439–464.CrossRefGoogle Scholar
  35. 35.
    Shimoda, K., & Hirata, T. (2000). Biotransformation of enones with biocatalysts—two enone reductases from Astasia longa. Journal of Molecular Catalysis B, 8, 255–264.CrossRefGoogle Scholar
  36. 36.
    Means, G. D., Mahendroo, M. S., Corbin, C. J., Mathis, J. M., Powell, F. E., Mendelson, C. R., et al. (1989). Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. The Journal of Biological Chemistry, 264, 19385–19391.PubMedGoogle Scholar
  37. 37.
    Toda, K., Fukata, J., Onishi, S., Hashimoto, K., Sagara, Y., & Shizuta, Y. (1997). Cooperative regulation of the human aromatase cytochrome P450 gene transcription by placenta-specific cis-acting elements. The Journal of Steroid Biochemistry and Molecular Biology, 61, 211–217.PubMedCrossRefGoogle Scholar
  38. 38.
    Simpson, E. R., Michael, M. D., Agarwal, V. R., Hinshelwood, M. M., Bulun, S. E., & Zhao, Y. (1997). Cytochromes P450 11: Expression of the CYP19 (aromatase) gene: An unusual case of alternative promoter usage. The FASEB Journal, 11, 29–36.Google Scholar
  39. 39.
    Ciolino, H. P., Wang, T. T. Y., & Sathyamoorthy, N. (2000). Inhibition of aromatase activity and expression in MCF-7 cells by the chemopreventive retinoid N-(4-hydroxy-phenyl)-retinamide. British Journal of Cancer, 83, 333–337.PubMedCrossRefGoogle Scholar
  40. 40.
    Brodie, A., Lu, Q., & Long, B. (1999). Aromatase and its inhibitors. The Journal of Steroid Biochemistry and Molecular Biology, 69, 205–210.PubMedCrossRefGoogle Scholar
  41. 41.
    Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., & Santen, R. J. (1997). Aromatase activity and expression in breast cancer and benign breast tissue stromal cells. The Journal of Clinical Endocrinology and Metabolism, 82, 200–208.PubMedCrossRefGoogle Scholar
  42. 42.
    Prall, O. W., Rogan, E. M., & Sutherland, R. L. (1998). Oestrogen regulation of cell cycle progression in breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 65, 169–174.PubMedCrossRefGoogle Scholar
  43. 43.
    De Cupis, A., & Favoni, R. E. (1997). Oestrogen/growth factor cross-talk in breast carcinoma: A specific target for novel antiestrogens. Trends in Pharmacological Sciences, 18, 245–251.PubMedGoogle Scholar
  44. 44.
    Brueggemeier, R. W., Hackett, J. C., & Diaz-Cruz, E. S. (2005). Aromatase inhibitors in the treatment of breast cancer. Endocrine Reviews, 26, 331–345.PubMedCrossRefGoogle Scholar
  45. 45.
    Carmichael, P. L. (1998). Mechanisms of action of antiestrogens: Relevance to clinical benefits and risks. Cancer Investigation, 16, 604–611.PubMedCrossRefGoogle Scholar
  46. 46.
    Jordan, V. C. (1995). Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Annual Review of Pharmacology and Toxicology, 35, 195–211.PubMedCrossRefGoogle Scholar
  47. 47.
    Covey, D. F., & Hood, W. F. (1981). Enzyme-generated intermediates derived from 4-androstene-3,6,17-trione and 1,4,6-androstatriene- 3,17-dione cause a time-dependent decrease in human placental aromatase activity. Endocrinology, 108, 1597–1599.PubMedCrossRefGoogle Scholar
  48. 48.
    Covey, D. F., & Hood, W. F. (1982). Aromatase enzyme catalysis is involved in the potent inhibition of estrogen biosynthesis caused by 4-ace. Molecular Pharmacology, 21, 173–180.PubMedGoogle Scholar
  49. 49.
    Brueggemeier, R. W., Li, P. K., Chen, H. H., Moh, P. P., & Katlic, N. E. (1990). Biochemical and pharmacological development of steroidal inhibitors of aromatase. The Journal of Steroid Biochemistry and Molecular Biology, 37, 379–385.PubMedCrossRefGoogle Scholar
  50. 50.
    Ghosh, D., Griswold, J., Erman, M., & Pangborn, W. (2009). Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 457, 219–223.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohamed-Elamir F. Hegazy
    • 1
    • 2
    Email author
  • Amira M. Gamal-Eldeen
    • 3
  • Ali M. El-Halawany
    • 4
  • Abou El-Hamd H. Mohamed
    • 5
  • Paul W. Paré
    • 6
  1. 1.Chemistry of Medicinal Plants Department, and Pharmaceutical Laboratory, Center of Excellence for Advanced SciencesNational Research CenterCairoEgypt
  2. 2.Kyoto Pharmaceutical UniversityKyotoJapan
  3. 3.Cancer Biology Laboratory, Center of Excellence for Advanced Sciences, and Biochemistry DepartmentNational Research CenterCairoEgypt
  4. 4.Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
  5. 5.Department of Chemistry, Aswan-Faculty of ScienceSouth Valley UniversityAswânEgypt
  6. 6.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations