Skip to main content

Advertisement

Log in

Characterization of Escherichia coli [NiFe]-Hydrogenase Distribution During Fermentative Growth at Different pHs

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The contribution made by each of the three active [NiFe]-hydrogenases (Hyd) of Escherichia coli during fermentation of glucose or glycerol in peptone-based medium at different pHs was analysed. The activities of the hydrogen-oxidizing Hyd-1 and Hyd-2 enzymes showed a reciprocal dependence on the pH of the medium while Hyd-3, a key component of the hydrogen-evolving formate hydrogenlyase complex, was mainly active at pH 6.5. Our findings identify the conditions during fermentation of glucose or glycerol under which each [NiFe]-hydrogenase is optimally active and demonstrate a previously unrecognized dependence on Hyd-1 activity at low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vignais, P. M., & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Current Issues on Molecular Biology, 6, 159–188.

    CAS  Google Scholar 

  2. Forzi, L., & Sawers, R. G. (2007). Maturation of [NiFe]-hydrogenases in Escherichia coli. BioMetals, 20, 567–578.

    Article  Google Scholar 

  3. Ballantine, S. P., & Boxer, D. H. (1986). Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. European Journal of Biochemistry, 156, 277–284.

    Article  PubMed  CAS  Google Scholar 

  4. Sawers, R. G., & Boxer, D. H. (1986). Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. European Journal of Biochemistry, 156, 265–275.

    Article  PubMed  CAS  Google Scholar 

  5. Sargent, F., Ballantine, S. P., Rugman, P. A., Palmer, T., & Boxer, D. H. (1998). Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit: Identification of a soluble precursor of the small subunit in a hypB mutant. European Journal of Biochemistry, 255, 746–754.

    Article  PubMed  CAS  Google Scholar 

  6. Sawers, R. G., Ballantine, S. P., & Boxer, D. H. (1985). Differential expression of hydrogenase isoenzymes in Escherichia coli: Evidence for a third isoenzyme. Journal of Bacteriology, 164, 1324–1331.

    PubMed  CAS  Google Scholar 

  7. Sauter, M., Bohm, R., & Bock, A. (1992). Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Molecular Microbiology, 6, 1523–1532.

    Article  PubMed  CAS  Google Scholar 

  8. Andrews, S. C., Berks, B. C., McClay, J., Ambler, A., Quail, M. A., Golby, P., et al. (1997). A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology, 143, 3633–3647.

    Article  PubMed  CAS  Google Scholar 

  9. Skibinski, D. A. G., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., et al. (2002). Regulation of the hydrogenase-4 operon of Escherichia coli by the σ54-dependent transcriptional activators FhlA and HyfR. Journal of Bacteriology, 184, 6642–6653.

    Article  PubMed  CAS  Google Scholar 

  10. Bagramyan, K., Mnatsakanyan, N., Poladian, A., Vassilian, A., & Trchounian, A. (2002). The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Letters, 516, 172–178.

    Article  PubMed  CAS  Google Scholar 

  11. Böck, A., King, P. W., Blokesch, M., & Posewitz, M. C. (2006). Maturation of hydrogenases. Advances of Microbial Physiology, 51, 1–71.

    Article  Google Scholar 

  12. Rossmann, R., Sawers, G., & Bock, A. (1991). Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate and pH: Definition of formate regulon. Molecular Microbiology, 5, 2807–2814.

    Article  PubMed  CAS  Google Scholar 

  13. King, P. W., & Przybyla, A. E. (1999). Response of hya expression to external pH in Escherichia coli. Journal of Bacteriology, 181, 5250–5256.

    PubMed  CAS  Google Scholar 

  14. Richard, D. J., Sawers, G., Sargent, F., McWalter, L., & Boxer, D. H. (1999). Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology, 145, 2903–2912.

    PubMed  CAS  Google Scholar 

  15. Ballantine, S., & Boxer, D. H. (1985). Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. Journal of Bacteriology, 163, 454–459.

    PubMed  CAS  Google Scholar 

  16. Lukey, M. J., Parkin, A., Roessler, M. M., Murphy, B. J., Harmer, J., Palmer, T., et al. (2010). How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. Journal of Biological Chemistry, 285, 3928–3938.

    Article  PubMed  CAS  Google Scholar 

  17. Atlung, T., Knudsen, K., Heerfordt, L., & Bronsted, L. (1997). Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. Journal of Bacteriology, 179, 2141–2146.

    PubMed  CAS  Google Scholar 

  18. Dharmadi, Y., Murarka, A., & Gonsalez, R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnology and Bioengineering, 94, 821–829.

    Article  PubMed  CAS  Google Scholar 

  19. Murarka, A., Dharmadi, Y., Yazdani, S. S., & Gonzalez, R. (2008). Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Applied and Environmental Microbiology, 74, 1124–1135.

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez, R., Murarka, A., Dharmadi, Y., & Yasdani, S. S. (2008). A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metabolic Engineering, 10, 234–245.

    Article  PubMed  CAS  Google Scholar 

  21. Böck, A., & Sawers, G. (1996). Fermentation. In Neidhardt, F. C., et al. (Eds.), Escherichia coli and Salmonella: Molecular and cellular biology (2nd ed., Chapter 18, pp. 262–282). Washington: ASM Press.

  22. Trchounian, K., & Trchounian, A. (2009). Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. International Journal of Hydrogen Energy, 34, 8839–8845.

    Article  CAS  Google Scholar 

  23. Kim, Y. J., Lee, H. S., Kim, E. S., Bae, S. S., Lim, J. K., Matsumi, R., et al. (2010). Formate-driven growth coupled with H2 production. Nature, 467, 352–355.

    Article  PubMed  CAS  Google Scholar 

  24. Sawers, G., Heider, J., Zehelein, E., & Böck, A. (1991). Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. Journal of Bacteriology, 173, 4983–4993.

    PubMed  CAS  Google Scholar 

  25. Trchounian, K., Sanchez-Torres, V., Wood, K. T., & Trchounian, A. (2011). Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. International Journal of Hydrogen Energy, 36, 4323–4331.

    Article  CAS  Google Scholar 

  26. Paschos, A., Bauer, A., Zimmermann, A., Zehelein, E., & Bock, A. (2002). HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. Journal of Biological Chemistry, 277, 49945–49951.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  29. Menon, N. K., Robbins, J., Wendt, J. C., Shanmugan, K. T., & Przybyla, A. E. (1991). Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. Journal of Bacteriology, 173, 4851–4861.

    PubMed  CAS  Google Scholar 

  30. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M. A., & Bock, A. (1988). Gene for a novel tRNA species that accepts l-serine and cotranslationally insert selenocysteine. Nature, 331, 723–725.

    Article  PubMed  CAS  Google Scholar 

  31. Noguchi, K., Riggins, D. P., Eldahan, K. C., Kitko, R. D., & Slonczewski, J. L. (2010). Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE, 5, e10132.

    Article  PubMed  Google Scholar 

  32. Soboh, B., Pinske, C., Kuhns, M., Waclawek, M., Ihling, C., Trchounian, K., et al. (2011). The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: Benzyl viologen oxidoreductase activity. BMC Microbiology, 11, 173.

    Article  PubMed  CAS  Google Scholar 

  33. Zbell, A., Maier, S. E., & Maier, R. J. (2008). Salmonella enterica serovar t yphimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infection and Immunity, 76, 4445–4454.

    Article  PubMed  CAS  Google Scholar 

  34. Menon, N. K., Chatelus, C. Y., Dervartanian, M., Wendt, J. C., Shanmugam, K. T., Peck, H. D., Jr., et al. (1994). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. Journal of Bacteriology, 176, 4416–4423.

    PubMed  CAS  Google Scholar 

  35. Olson, J. W., & Maier, R. J. (2002). Molecular hydrogen as an energy source for Helicobacter pylori. Science, 298, 1788–1790.

    Article  PubMed  CAS  Google Scholar 

  36. Maier, R. J. (2005). Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochemical Society Transactions, 33, 83–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a FEBS Summer Research Fellowship to KT (2010), by the Deutsche Forschungsgemeinschaft (Grant SA 494/3-1 to RGS) and by the Ministry of Education and Science of Armenia (Research Grants #1012 and #11-1F202 to AT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchounian, K., Pinske, C., Sawers, R.G. et al. Characterization of Escherichia coli [NiFe]-Hydrogenase Distribution During Fermentative Growth at Different pHs. Cell Biochem Biophys 62, 433–440 (2012). https://doi.org/10.1007/s12013-011-9325-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9325-y

Keywords

Navigation