Skip to main content

Advertisement

Log in

The Expression and Pharmacological Characterization of Nicotinic Acetylcholine Receptor Subunits in HBE16 Airway Epithelial Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study characterizes the expression and the biological effects of the nicotinic acetylcholine receptor (nAChR) on human airway epithelial cells. Cultured HBE16 airway epithelial cells were incubated with either nicotine or cigarette smoke extract (CSE). The nAChR gene and protein expression in cells were detected by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, and western blot. The protein expression of the nAChR subunits, α1, α5, and α7, were evaluated by immunohistochemistry. Cells were subsequently transfected with α1-, α5-, and α7-specific siRNAs, and the effects of nicotine on the production of the pro-inflammatory factors, TNF-α, IL-8, and IL-6 in transfected cells were analyzed using an enzyme-linked immunosorbent assay and real-time PCR. We detected α1, α5, α7, and β2 subunits in untreated HBE16 cells, and their expression was elevated after nicotinic incubation. Importantly, the most significant increase in expression was observed in the α5 and α7 subunits. However, CSE did not cause a significant enhancement in the expression of these genes and proteins. Cells pretreated with nicotine prior to lipopolysaccharide (LPS) stimulation exhibited a lower production of TNF-α, IL-8, and IL-6 compared to LPS-treated (only) cells. Cells that were transfected with α7 siRNA and subsequently incubated with nicotine and LPS, exhibited a higher expression of TNF-α, IL-8, and IL-6 compared with non-transfected cells or α1 and α5 siRNA-transfected cells. In α1- and α5-siRNA-transfected cells, the expression of TNF-α, IL-8, and IL-6 showed no significant difference compared with non-transfected cells. Therefore, we concluded that α1, α5, α7, and β2 nAChR subunits are highly expressed in human bronchial epithelial cells (HBE16) after nicotinic incubation and that the α7 subunit is involved in the nicotine-induced inhibitory effect on the production of inflammatory factors. Moreover, α1, α5, and β2 subunits did not play an important role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin IL interleukin

CE:

Cigarette smoke chloroform extract

CSE:

Cigarette smoke extract

FITC:

Fluorescein isothiocyanate

HRP:

Horseradish peroxidase

NF-κB:

Nuclear factor-κB

IL:

Interleukin

IFN-γ:

Interferon-γ

LPS:

Lipopolysaccharide

MUC5AC:

Mucin 5AC

PBS:

Phosphate-buffered saline

References

  1. Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: From structure to pathology. Progress in Neurobiology, 74, 363–396.

    Article  PubMed  CAS  Google Scholar 

  2. Conti-Tronconi, B. M., McLane, K. E., Raftery, M. A., Grando, S. A., & Protti, M. P. (1994). The nicotinic acetylcholine receptor: Structure and autoimmune pathology. Critical Reviews in Biochemistry and Molecular Biology, 29, 69–123.

    Article  PubMed  CAS  Google Scholar 

  3. Albuquerque, E. X., Alkondon, M., Pereira, E. F., Castro, N. G., Schrattenholz, A., Barbosa, C. T., et al. (1997). Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. Journal of Pharmacology and Experimental Therapeutics, 280, 1117–1136.

    PubMed  CAS  Google Scholar 

  4. Lindstrom, J. M. (2000). Acetylcholine receptors and myasthenia. Muscle and Nerve, 23, 453–477.

    Article  PubMed  CAS  Google Scholar 

  5. Maus, A. D., Pereira, E. F., Karachunski, P. I., Horton, R. M., Navaneetham, D., Macklin, K., et al. (1998). Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Molecular Pharmacology, 54, 779–788.

    PubMed  CAS  Google Scholar 

  6. Gwilt, C. R., Donnelly, L. E., & Rogers, D. F. (2007). The non-neuronal cholinergic system in the airways: An unappreciated regulatory role in pulmonary inflammation? Pharmacology and Therapeutics, 115, 208–222.

    Article  PubMed  CAS  Google Scholar 

  7. Costa, F., & Soares, R. (2009). Nicotine: A pro-angiogenic factor. Life Science, 84, 785–790.

    Article  CAS  Google Scholar 

  8. Kalayciyan, A., Orawa, H., Fimme, S., Perschel, F. H., González, J. B., Fitzner, R. G., et al. (2007). Nicotine and biochanin A, but not cigarette smoke, induce anti-inflammatory effects on keratinocytes and endothelial cells in patients with Behçet’s disease. Journal of Investigative Dermatology, 127, 81–89.

    Article  PubMed  CAS  Google Scholar 

  9. Plummer, H. K., 3rd, Dhar, M., & Schuller, H. M. (2005). Expression of the alpha 7 nicotinic acetylcholine receptor in human lung cells. Respiratory Research, 6, 29–38.

    Article  PubMed  Google Scholar 

  10. Wang, Y., Pereira, E. F., Maus, A. D., Ostlie, N. S., Navaneetham, D., Lei, S., et al. (2001). Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors. Molecular Pharmacology, 60, 1201–1209.

    PubMed  CAS  Google Scholar 

  11. Mishra, N. C., Rir-sima-ah, J., Boyd, R. T., Singh, S. P., Gundavarapu, S., Langley, R. J., et al. (2010). Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. Journal of Immunology, 185, 588–596.

    Article  CAS  Google Scholar 

  12. Li, Q., Zhou, X. D., Kolosov, V. P., & Perelman, J. M. (2010). Nicotine suppresses inflammatory factors in HBE16 airway epithelial cells after exposure to cigarette smoke extract and lipopolysaccharide. Translational Research, 156, 326–334.

    Article  PubMed  CAS  Google Scholar 

  13. Gruenert, D. C., Finkbeiner, W. E., & Widdicombe, J. H. (1995). Culture and transformation of human airway epithelial cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 268, L347–L360.

    CAS  Google Scholar 

  14. Hodgson, V. J., Walker, G. M., & Button, D. (1994). A rapid colorimetric assay of killer toxin activity in yeast. FEMS Microbiology Letters, 120, 201–205.

    Article  PubMed  CAS  Google Scholar 

  15. Fratiglioni, L., & Wang, H. X. (2000). Smoking and Parkinson’s and Alzheimer’s disease: A review of the epidemiological studies. Behavioural Brain Research, 113, 117–120.

    Article  PubMed  CAS  Google Scholar 

  16. Carlisle, D. L., Hopkins, T. M., Gaither-Davis, A., Silhanek, M. J., Luketich, J. D., Christie, N. A., et al. (2004). Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts. Respiratory Research, 5, 27–43.

    Article  PubMed  Google Scholar 

  17. Dennis, P. A., Van Waes, C., Gutkind, J. S., Kellar, K. J., Vinson, C., Mukhin, A. G., et al. (2005). The biology of tobacco and nicotine:bench to beside. Cancer Epidemiology, Biomarkers and Prevention, 14, 764–767.

    Article  PubMed  CAS  Google Scholar 

  18. Gahring, L. C., & Rogers, S. W. (2006). Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS Journal, 7, E885–E894.

    Article  PubMed  Google Scholar 

  19. Wongsriraksa, A., Parsons, M. E., & Whelan, C. J. (2009). Characterisation of nicotine receptors on human peripheral blood mononuclear cells (PBMC). Inflammation Research, 58, 39–44.

    Article  Google Scholar 

  20. Conti-Fine, B. M., Navaneetham, D., Lei, S., & Maus, A. D. (2000). Neuronal nicotinic receptors in non-neuronal cells: New mediators of tobacco toxicity? European Journal of Pharmacology, 393, 279–294.

    Article  PubMed  CAS  Google Scholar 

  21. Sharma, G., & Vijayaraghavan, S. (2002). Nicotinic receptor signaling in nonexcitable cells. Journal of Neurobiology, 53, 524–534.

    Article  PubMed  CAS  Google Scholar 

  22. Albuquerque, E. X., Pereira, E. F., Alkondon, M., & Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews, 89, 73–120.

    Article  PubMed  CAS  Google Scholar 

  23. Woolf, A., Burkhart, K., Caraccio, T., & Litovitz, T. (1996). Self-poisoning among adults using multiple transdermal nicotine patches. Journal of Toxicology-Clinical Toxicology, 34, 691–698.

    Article  PubMed  CAS  Google Scholar 

  24. Shytle, R. D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., et al. (2004). Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry, 89, 337–343.

    Article  PubMed  CAS  Google Scholar 

  25. de Jonge, W. J., & Ulloa, L. (2007). The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. British Journal of Pharmacology, 151, 915–929.

    Article  PubMed  Google Scholar 

  26. Jull, B. A., Plummer, H. K., & Schuller, H. M. (2001). Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of cmyc in human small cell lung carcinoma cells and pulmonaryneuroendocrine cells. Journal of Cancer Research and Clinical Oncology, 127, 707–717.

    PubMed  CAS  Google Scholar 

  27. Fu, X. W., Lindstrom, J., & Spindel, E. R. (2009). Nicotine activates and up-regulates nicotinic acetylcholine receptors in bronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 41, 93–99.

    Article  PubMed  CAS  Google Scholar 

  28. Li, X. W., & Wang, H. (2006). Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Science, 78, 1863–1870.

    Article  CAS  Google Scholar 

  29. Blanchet, M. R., Langlois, A., Israël-Assayag, E., Beaulieu, M. J., Ferland, C., Laviolette, M., et al. (2007). Modulation of eosinophil activation in vitro by a nicotinic receptor agonist. Journal of Leukocyte Biology, 81(5), 1245–1251.

    Article  PubMed  CAS  Google Scholar 

  30. Nouri-Shirazi, M., & Guinet, E. (2003). Evidence for the immunosuppressive role of nicotine on human dendritic cell function. Immunology, 109, 365–373.

    Article  PubMed  CAS  Google Scholar 

  31. Park, S. Y., Baik, Y. H., Cho, J. H., Kim, S., Lee, K. S., & Han, J. S. (2008). Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1–p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine, 44, 126–134.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi, H. K., Iwagaki, H., Hamano, R., Kanke, T., Liu, K., Sadamori, H., et al. (2007). The immunosuppressive effects of nicotine during human mixed lymphocyte reaction. European Journal of Pharmacology, 559, 69–74.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi, H. K., Iwagaki, H., Hamano, R., Yoshino, T., Tanaka, N., & Nishibori, M. (2006). Effect of nicotine on IL-18-initiated immune response in human monocytes. Journal of Leukocyte Biology, 80, 1388–1394.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi, H. K., Iwagaki, H., Hamano, R., Yoshino, T., Tanaka, N., & Nishibori, M. (2006). alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and-12 production in monocytes. Journal of Pharmacological Sciences, 102, 143–146.

    Article  PubMed  CAS  Google Scholar 

  35. Iho, S., Tanaka, Y., Takauji, R., Kobayashi, C., Muramatsu, I., Iwasaki, H., et al. (2003). Nicotine induces human neutrophils to produce IL-8 through the generation of peroxynitrite and subsequent activation of NF-κB. Journal of Leukocyte Biology, 74, 942–951.

    Article  PubMed  CAS  Google Scholar 

  36. Sugano, N., Shimada, K., Ito, K., & Murai, S. (1998). Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor kappaB activation. Biochemical and Biophysical Research Communications, 252, 25–28.

    Article  PubMed  CAS  Google Scholar 

  37. Dowling, O., Rochelson, B., Way, K., Al-Abed, Y., & Metz, C. N. (2007). Nicotine inhibits cytokine production by placenta cells via NF kappaB: potential role in pregnancy-induced hypertension. Molecular Medicine, 13, 576–583.

    Article  PubMed  CAS  Google Scholar 

  38. Summers, A. E., Whelan, C. J., & Parsons, M. E. (2002). Nicotinic acetylcholine receptor subunits and receptor activity in the epithelial cell line HT29. Life Science, 72, 2091–2094.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (No. 81070031 and No. 81000003) and the China-Russia Cooperation Research Program (81011120108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Zhou, X., Kolosov, V.P. et al. The Expression and Pharmacological Characterization of Nicotinic Acetylcholine Receptor Subunits in HBE16 Airway Epithelial Cells. Cell Biochem Biophys 62, 421–431 (2012). https://doi.org/10.1007/s12013-011-9324-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9324-z

Keywords

Navigation