Skip to main content

Advertisement

Log in

Piperine Attenuates Cardiovascular, Liver and Metabolic Changes in High Carbohydrate, High Fat-Fed Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Black pepper is used worldwide to enhance food flavor. We investigated dietary supplementation with piperine, the active principle of black pepper, to high carbohydrate, high fat (HCHF) diet-fed rats as a model of human metabolic syndrome. Rats were fed with either HCHF diet (carbohydrate, 52%; fat, 24%; 25% fructose in drinking water) or cornstarch (CS) diet for a total of 16 weeks. Diets of the treatment groups (CS + piperine and HCHF + piperine) were supplemented with piperine for the last 8 weeks of this protocol. After 16 weeks, rats fed with HCHF diet developed hypertension, elevated oxidative stress and inflammation-induced cardiac changes (infiltration of inflammatory cells in heart, increase in count and degranulation of mast cells in heart, cardiac fibrosis and increase in ventricular stiffness), reduced responsiveness of aortic rings, impaired glucose tolerance, abdominal obesity together with liver fibrosis, fat deposition and increased plasma liver enzymes. Supplementation with piperine (375 mg/kg food; approximately 30 mg/kg/day) in HCHF-fed rats normalized blood pressure, improved glucose tolerance and reactivity of aortic rings, reduced plasma parameters of oxidative stress and inflammation, attenuated cardiac and hepatic inflammatory cell infiltration and fibrosis and improved liver function. These changes clearly suggest that piperine reduces symptoms of human metabolic syndrome in HCHF-fed rats by reducing inflammation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iyer, A., Panchal, S., Poudyal, H., & Brown, L. (2009). Potential health benefits of Indian spices in the symptoms of the metabolic syndrome: a review. Indian Journal of Biochemistry and Biophysics, 46, 467–481.

    PubMed  CAS  Google Scholar 

  2. Ee, G. C., Lim, C. M., Lim, C. K., Rahmani, M., Shaari, K., & Bong, C. F. (2009). Alkaloids from Piper sarmentosum and Piper nigrum. Natural Product Research, 23, 1416–1423.

    Article  PubMed  CAS  Google Scholar 

  3. Taqvi, S. I., Shah, A. J., & Gilani, A. H. (2008). Blood pressure lowering and vasomodulator effects of piperine. Journal of Cardiovascular Pharmacology, 52, 452–458.

    Article  PubMed  CAS  Google Scholar 

  4. Bang, J. S., Ohda, H., Choi, H. M., et al. (2009). Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther, 11, R49.

    Article  PubMed  Google Scholar 

  5. Vijayakumar, R. S., & Nalini, N. (2006). Efficacy of piperine, an alkaloidal constituent from Piper nigrum on erythrocyte antioxidant status in high fat diet and antithyroid drug induced hyperlipidemic rats. Cell Biochemistry and Function, 24, 491–498.

    Article  PubMed  CAS  Google Scholar 

  6. Vijayakumar, R. S., Surya, D., & Nalini, N. (2004). Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Report, 9, 105–110.

    Article  PubMed  CAS  Google Scholar 

  7. Khajuria, A., Thusu, N., & Zutshi, U. (2002). Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine, 9, 224–231.

    Article  PubMed  CAS  Google Scholar 

  8. Panchal S. K., Brown L. (2011). Rodent models for metabolic syndrome research. Journal of Biomedicine and Biotechnology. doi:10.1155/2011/351982.

  9. Panchal, S., Poudyal, H., Iyer, A., et al. (2011). High carbohydrate-high fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. Journal of Cardiovascular Pharmacology, 57, 611–624.

    Article  PubMed  Google Scholar 

  10. Poudyal, H., Campbell, F., & Brown, L. (2010). Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. Journal of Nutrition, 140, 946–953.

    Article  PubMed  CAS  Google Scholar 

  11. Poudyal, H., Panchal, S., & Brown, L. (2010). Comparison of purple carrot juice and beta-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. British Journal of Nutrition, 104, 1322–1332.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, L., Fenning, A., Chan, V., et al. (2002). Echocardiographic assessment of cardiac structure and function in rats. Heart Lung and Circulation, 11, 167–173.

    Article  Google Scholar 

  13. Litwin, S. E., Katz, S. E., Morgan, J. P., & Douglas, P. S. (1994). Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation, 89, 345–354.

    Article  PubMed  CAS  Google Scholar 

  14. Fenning, A., Harrison, G., Rose’meyer, R., Hoey, A., & Brown, L. (2005). l-Arginine attenuates cardiovascular impairment in DOCA-salt hypertensive rats. American Journal of Physiology Heart and Circulatory Physiology, 289, H1408–H1416.

    Article  PubMed  CAS  Google Scholar 

  15. Rice-Evans, C., & Miller, N. J. (1994). Total antioxidant status in plasma and body fluids. Methods in Enzymology, 234, 279–293.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta, S. K., Bansal, P., Bhardwaj, R. K., & Velpandian, T. (2000). Comparative anti-nociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination. Pharmacological Research, 41, 657–662.

    Article  PubMed  CAS  Google Scholar 

  17. D’Hooge, R., Pei, Y. Q., Raes, A., Lebrun, P., van Bogaert, P. P., & de Deyn, P. P. (1996). Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittelforschung, 46, 557–560.

    PubMed  Google Scholar 

  18. Bai, Y. F., & Xu, H. (2000). Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica, 21, 357–359.

    PubMed  CAS  Google Scholar 

  19. Lee, S. A., Hong, S. S., Han, X. H., et al. (2005). Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chemical and Pharmaceutical Bulletin, 53, 832–835.

    Article  PubMed  CAS  Google Scholar 

  20. Selvendiran, K., Singh, J. P., Krishnan, K. B., & Sakthisekaran, D. (2003). Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia, 74, 109–115.

    Article  PubMed  CAS  Google Scholar 

  21. Shah, S. S., Shah, G. B., Singh, S. D., Gohil, P. V., Chauhan, K., Shah, K. A., et al. (2011). Effect of piperine in the regulation of obesity-induced dyslipidemia in high-fat diet rats. Indian Journal of Pharmacology, 43, 296–299.

    Article  PubMed  CAS  Google Scholar 

  22. Pepine, C. J. (1998). Clinical implications of endothelial dysfunction. Clinical Cardiology, 21, 795–799.

    Article  PubMed  CAS  Google Scholar 

  23. Brunner, H., Cockcroft, J. R., Deanfield, J., et al. (2005). Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. Journal of Hypertension, 23, 233–246.

    Article  PubMed  CAS  Google Scholar 

  24. Tziomalos, K., Athyros, V. G., Karagiannis, A., & Mikhailidis, D. P. (2010). Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutrition, Metabolism and Cardiovascular Diseases, 20, 140–146.

    Article  PubMed  CAS  Google Scholar 

  25. Aktoz, M., Erdogan, O., & Altun, A. (2007). Electrocardiographic prediction of left ventricular geometric patterns in patients with essential hypertension. International Journal of Cardiology, 120, 344–350.

    Article  PubMed  Google Scholar 

  26. Savoia, C., & Schiffrin, E. L. (2006). Inflammation in hypertension. Current Opinion in Nephrology and Hypertension, 15, 152–158.

    PubMed  CAS  Google Scholar 

  27. Levick, S. P., McLarty, J. L., Murray, D. B., Freeman, R. M., Carver, W. E., & Brower, G. L. (2009). Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension, 53, 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  28. van Heerebeek, L., Somsen, A., & Paulus, W. J. (2009). The failing diabetic heart: focus on diastolic left ventricular dysfunction. Current Diabetes Reports, 9, 79–86.

    Article  PubMed  Google Scholar 

  29. Klotz, S., Foronjy, R. F., Dickstein, M. L., et al. (2005). Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation, 112, 364–374.

    Article  PubMed  CAS  Google Scholar 

  30. Harrison, D. G., & Gongora, M. C. (2009). Oxidative stress and hypertension. Medical Clinics of North America, 93, 621–635.

    Article  PubMed  CAS  Google Scholar 

  31. Sowers, J. R., & Frohlich, E. D. (2004). Insulin and insulin resistance: impact on blood pressure and cardiovascular disease. Medical Clinics of North America, 88, 63–82.

    Article  PubMed  CAS  Google Scholar 

  32. Patel, K., & Srinivasan, K. (2000). Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung, 44, 42–46.

    Article  Google Scholar 

  33. Clark, J. M., Brancati, F. L., & Diehl, A. M. (2002). Nonalcoholic fatty liver disease. Gastroenterology, 122, 1649–1657.

    Article  PubMed  Google Scholar 

  34. Chitturi, S., Wong, V. W., & Farrell, G. (2011). Nonalcoholic fatty liver in Asia: firmly entrenched and rapidly gaining ground. Journal of Gastroenterology and Hepatology, 26(Suppl 1), 163–172.

    Article  PubMed  Google Scholar 

  35. Giannini, E. G., Testa, R., & Savarino, V. (2005). Liver enzyme alteration: a guide for clinicians. CMAJ, 172, 367–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, V., Poudyal, H. & Brown, L. Piperine Attenuates Cardiovascular, Liver and Metabolic Changes in High Carbohydrate, High Fat-Fed Rats. Cell Biochem Biophys 67, 297–304 (2013). https://doi.org/10.1007/s12013-011-9306-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9306-1

Keywords

Navigation