Skip to main content

Advertisement

Log in

Hyperhomocysteinemia and Related Genetic Polymorphisms Correlate with Ulcerative Colitis in Southeast China

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 19 January 2012

Abstract

Increased levels of homocysteine are found systemically and in intestinal mucosa of patients with inflammatory bowel disease, and, specifically, in ulcerative colitis (UC). However, there are controversial reports regarding the factors contributing to increased levels of homocysteine in UC. Furthermore, little information is available regarding the relationship between hyperhomocysteinemia (HHcy), vitamin status, and genetic polymorphisms of homocysteine-related enzymes in these patients. This study examined four functional polymorphisms linked to homocysteine metabolism (MTHFR C677T and A1298C, MTR A2756G and MTRR A66G), and evaluated plasma levels of homocysteine, folate, and vitamin B12 in 310 consecutive patients with UC and 936 age- and sex-matched healthy controls from southeast China. The variant allele and genotypic frequencies in MTHFR A1298C, MTR A2756G and MTRR A66G genes were significantly higher in patients with UC compared to healthy controls. Further, HHcy and low levels of folate and vitamin B12 were more frequent in patients with UC. The MTR 2756G allele, extent of the disease, and gender were the independent determinants of HHcy in these patients. These findings suggest that genetic and nutritional factors have a synergetic effect on HHcy in patients with UC. In conclusion, our data highlight a prevention strategy for moderation of HHcy and supplementation with folate and vitamine B12 in patients with UC from Southeast China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjerregaard, L. T., Nederby, N. J., Fredholm, L., Brandslund, I., Munkholm, P., & Hey, H. (2002). Hyperhomocysteinaemia, coagulation pathway activation and thrombophilia in patients with inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 37, 62–67.

    Article  PubMed  Google Scholar 

  2. Brunner, G., & Creutzfeldt, W. (1989). Omeprazole in the long-term management of patients with acid-related diseases resistant to ranitidine. Scandinavian Journal of Gastroenterology Supplement, 166, 101–105. discussion 111-3.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, M., Peyrin-Biroulet, L., Xia, B., Gueant-Rodriguez, R. M., Bronowicki, J. P., Bigard, M. A., et al. (2008). Methionine synthase A2756G polymorphism may predict ulcerative colitis and methylenetetrahydrofolate reductase C677T pancolitis, in Central China. BMC Medical Genetics, 9, 78.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, M., Xia, B., Rodriguez-Gueant, R. M., Bigard, M., & Gueant, J. L. (2005). Genotypes 677TT and 677CT+1298AC of methylenetetrahydrofolate reductase are associated with the severity of ulcerative colitis in central China. Gut, 54, 733–734.

    Article  PubMed  CAS  Google Scholar 

  5. Chowers, Y., Sela, B. A., Holland, R., Fidder, H., Simoni, F. B., & Bar-Meir, S. (2000). Increased levels of homocysteine in patients with Crohn’s disease are related to folate levels. American Journal of Gastroenterology, 95, 3498–3502.

    Article  PubMed  CAS  Google Scholar 

  6. Coppede, F., Colognato, R., Bonelli, A., Astrea, G., Bargagna, S., Siciliano, G., et al. (2007). Polymorphisms in folate and homocysteine metabolizing genes and chromosome damage in mothers of Down syndrome children. American Journal of Medical Genetics A, 143A, 2006–2015.

    Article  CAS  Google Scholar 

  7. Danese, S., Sgambato, A., Papa, A., Scaldaferri, F., Pola, R., Sans, M., et al. (2005). Homocysteine triggers mucosal microvascular activation in inflammatory bowel disease. American Journal of Gastroenterology, 100, 886–895.

    Article  PubMed  CAS  Google Scholar 

  8. De Groote, M. A., Testerman, T., Xu, Y., Stauffer, G., & Fang, F. C. (1996). Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science, 272, 414–417.

    Article  PubMed  Google Scholar 

  9. Drzewoski, J., Gasiorowska, A., Malecka-Panas, E., Bald, E., & Czupryniak, L. (2006). Plasma total homocysteine in the active stage of ulcerative colitis. Journal of Gastroenterology and Hepatology, 21, 739–743.

    Article  PubMed  CAS  Google Scholar 

  10. Gabriel, H. E., Crott, J. W., Ghandour, H., Dallal, G. E., Choi, S. W., Keyes, M. K., et al. (2006). Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic damage in the buccal mucosa of healthy adults. American Journal of Clinical Nutrition, 83, 835–841.

    PubMed  CAS  Google Scholar 

  11. Jiang, L., Xia, B., Li, J., Ye, M., Yan, W., Deng, C., et al. (2006). Retrospective survey of 452 patients with inflammatory bowel disease in Wuhan city, central China. Inflammatory Bowel Disease, 12, 212–217.

    Article  Google Scholar 

  12. Laraqui, A., Allami, A., Carrie, A., Raisonnier, A., Coiffard, A. S., Benkouka, F., et al. (2007). Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. European Journal of Internal Medicine, 18, 474–483.

    Article  PubMed  CAS  Google Scholar 

  13. Leclerc, D., Campeau, E., Goyette, P., Adjalla, C. E., Christensen, B., Ross, M., et al. (1996). Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Human Molecular Genetics, 5, 1867–1874.

    Article  PubMed  CAS  Google Scholar 

  14. Mahmood, A., Needham, J., Prosser, J., Mainwaring, J., Trebble, T., Mahy, G., et al. (2005). Prevalence of hyperhomocysteinaemia, activated protein C resistance and prothrombin gene mutation in inflammatory bowel disease. European Journal of Gastroenterology and Hepatology, 17, 739–744.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmud, N., Molloy, A., McPartlin, J., Corbally, R., Whitehead, A. S., Scott, J. M., et al. (1999). Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut, 45, 389–394.

    Article  PubMed  CAS  Google Scholar 

  16. Morgenstern, I., Raijmakers, M. T., Peters, W. H., Hoensch, H., & Kirch, W. (2003). Homocysteine, cysteine, and glutathione in human colonic mucosa: Elevated levels of homocysteine in patients with inflammatory bowel disease. Digestive Diseases and Sciences, 48, 2083–2090.

    Article  PubMed  CAS  Google Scholar 

  17. Nielsen, J. N., Larsen, T. B., Fredholm, L., Brandslund, I., Munkholm, P., & Hey, H. (2000). Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with IBD. Gut, 47, 456–457.

    Article  PubMed  CAS  Google Scholar 

  18. Oldenburg, B., Van Tuyl, B. A., van der Griend, R., Fijnheer, R., & van Berge Henegouwen, G. P. (2005). Risk factors for thromboembolic complications in inflammatory bowel disease: the role of hyperhomocysteinaemia. Digestive Diseases and Sciences, 50, 235–240.

    Article  PubMed  CAS  Google Scholar 

  19. Papa, A., Danese, S., Gasbarrini, G., & Gasbarrini, A. (2002). Genetic and nutritional predictors of hyperhomocysteinemia in inflammatory bowel disease. American Journal of Gastroenterology, 97, 490–491.

    Article  PubMed  Google Scholar 

  20. Papa, A., De Stefano, V., Danese, S., Chiusolo, P., Persichilli, S., Casorelli, I., et al. (2001). Hyperhomocysteinemia and prevalence of polymorphisms of homocysteine metabolism-related enzymes in patients with inflammatory bowel disease. American Journal of Gastroenterology, 96, 2677–2682.

    Article  PubMed  CAS  Google Scholar 

  21. Peyrin-Biroulet, L., Rodriguez-Gueant, R. M., Chamaillard, M., Desreumaux, P., Xia, B., Bronowicki, J. P., et al. (2007). Vascular and cellular stress in inflammatory bowel disease: revisiting the role of homocysteine. American Journal of Gastroenterology, 102, 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  22. Robert, K., Nehme, J., Bourdon, E., Pivert, G., Friguet, B., Delcayre, C., et al. (2005). Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology, 128, 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  23. Rogers, E. J., Chen, S., & Chan, A. (2007). Folate deficiency and plasma homocysteine during increased oxidative stress. New England Journal of Medicine, 357, 421–422.

    Article  PubMed  CAS  Google Scholar 

  24. Romagnuolo, J., Fedorak, R. N., Dias, V. C., Bamforth, F., & Teltscher, M. (2001). Hyperhomocysteinemia and inflammatory bowel disease: Prevalence and predictors in a cross-sectional study. American Journal of Gastroenterology, 96, 2143–2149.

    Article  PubMed  CAS  Google Scholar 

  25. Schneede, J., Refsum, H., & Ueland, P. M. (2000). Biological and environmental determinants of plasma homocysteine. Seminars in Thrombosis and Hemostasis, 26, 263–279.

    Article  PubMed  CAS  Google Scholar 

  26. Stocco, G., Martelossi, S., Sartor, F., Toffoli, G., Lionetti, P., Barabino, A., et al. (2006). Prevalence of methylenetetrahydrofolate reductase polymorphisms in young patients with inflammatory bowel disease. Digestive Diseases and Sciences, 51, 474–479.

    Article  PubMed  CAS  Google Scholar 

  27. Truelove, S. C., & Witts, L. J. (1955). Cortisone in ulcerative colitis; final report on a therapeutic trial. British Medical Journal, 2, 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  28. Vecchi, M., Sacchi, E., Saibeni, S., Meucci, G., Tagliabue, L., Duca, F., et al. (2000). Inflammatory bowel diseases are not associated with major hereditary conditions predisposing to thrombosis. Digestive Diseases and Sciences, 45, 1465–1469.

    Article  PubMed  CAS  Google Scholar 

  29. Weisberg, I., Tran, P., Christensen, B., Sibani, S., & Rozen, R. (1998). A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Molecular Genetics and Metabolism, 64, 169–172.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson, A., Platt, R., Wu, Q., Leclerc, D., Christensen, B., Yang, H., et al. (1999). A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Molecular Genetics and Metabolism, 67, 317–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Ministry of Health of China for Welfare Projects (200802156), Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province (2008BCC002), and Hubei Provincial Science & Technology Fund for International Cooperation (2007CA003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xia.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12013-012-9337-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Xia, X., Wang, W. et al. Hyperhomocysteinemia and Related Genetic Polymorphisms Correlate with Ulcerative Colitis in Southeast China. Cell Biochem Biophys 62, 203–210 (2012). https://doi.org/10.1007/s12013-011-9283-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9283-4

Keywords

Navigation