Skip to main content
Log in

Effects of Gekko Sulfated Polysaccharide–Protein Complex on the Defective Biorheological Characters of Dendritic Cells Under Tumor Microenvironment

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We previously isolated a sulfated polysaccharide–protein complex from Gekko swinhonis Guenther, a traditional Chinese medicine, and have demonstrated its direct anti-cancer effect on human hepatocellular carcinoma cell line SMMC-7721. Here we investigated the effects of Gekko sulfated polysaccharide–protein complex (GSPP) on the defective biorheological characters of dendritic cells (DCs) under SMMC-7721 microenvironment. Our findings have shown that the biorheological properties of DCs were severely impaired by SMMC-7721 microenvironment, including decreased cell deformability, migration, and electrophoresis mobility, increased osmotic fragilities, and changed organizations of cytoskeletal proteins. We also found decreased secretion of interleukin (IL)-12 and increased secretion of IL-10 in DCs. However, supernatant collected from nonmalignant liver cells had no effect on these parameters. SMMC-7721 cells were treated with GSPP and the supernatant was used to culture DCs. We found that the defective biorheological parameters of DCs, except for osmotic fragility, were partially or completely improved. The secretion of IL-12 did not change as compared with that of DCs in SMMC-7721 microenvironment, but the secretion of IL-10 was resumed to the control level. Our results indicate that GSPP could partially restore the defective biorheological characteristics of DCs via modifying the tumor microenvironment and decreasing the secretion of IL-10 of DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, Y., Aymeric, L., Locher, C., Kroemer, G., & Zitvogel, L. (2011). The dendritic cell-tumor cross-talk in cancer. Current Opinion in Immunology, 23, 146–152.

    Article  PubMed  CAS  Google Scholar 

  2. Jiang, P., Enomoto, A., & Takahashi, M. (2009). Cell biology of the movement of breast cancer cells: intracellular signaling and the actin cytoskeleton. Cancer Letters, 284, 122–130.

    Article  PubMed  CAS  Google Scholar 

  3. Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., et al. (2009). Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron, 61, 85–100.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson, B., Osada, T., Clay, T., Lyerly, H., & Morse, M. (2009). Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Current Molecular Medicine, 9, 702–707.

    Article  PubMed  CAS  Google Scholar 

  5. Li, L., Li, S. P., Min, J., & Zheng, L. (2007). Hepatoma cells inhibit the differentiation and maturation of dendritic cells and increase the production of regulatory T cells. Immunology Letters, 114, 38–45.

    Article  PubMed  CAS  Google Scholar 

  6. Ma, J., Usui, Y., Takeuchi, M., Okunuki, Y., Kezuka, T., Zhang, L., et al. (2010). Human uveal melanoma cells inhibit the immunostimulatory function of dendritic cells. Experimental Eye Research, 91, 491–499.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka, H., Shinto, O., Yashiro, M., Yamazoe, S., Iwauchi, T., Muguruma, K., et al. (2010). Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncology Reports, 24, 1637–1643.

    PubMed  CAS  Google Scholar 

  8. Wu, X. Z., Chen, D., & Xie, G. R. (2006). Effects of Gekko sulfated polysaccharide on the proliferation and differentiation of hepatic cancer cell line. Cell Biology International, 30, 659–664.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, D., Yao, W. J., Zhang, X. L., Han, X. Q., Qu, X. Y., Ka, W. B., et al. (2010). Effects of Gekko sulfated polysaccharide–protein complex on human hepatoma SMMC-7721 cells: inhibition of proliferation and migration. Journal of Ethnopharmacology, 127, 702–708.

    Article  PubMed  CAS  Google Scholar 

  10. Zeng, Z., Yao, W., Xu, X., Xu, G., Long, J., Wang, X., et al. (2009). Hepatocellular carcinoma cells deteriorate the biophysical properties of dendritic cells. Cell Biochemistry Biophysics, 55, 33–43.

    Article  CAS  Google Scholar 

  11. Zeng, Z., Xu, X., Zhang, Y., Xing, J., Long, J., Gu, L., et al. (2007). Tumor-derived factors impaired motility and immune functions of dendritic cells through derangement of biophysical characteristics and reorganization of cytoskeleton. Cell Motility and the Cytoskeleton, 64, 186–198.

    Article  PubMed  CAS  Google Scholar 

  12. Feng, Y., Tian, Z. M., Wan, M. X., & Zheng, Z. B. (2007). Protein profile of human hepatocarcinoma cell line SMMC-7721: identification and functional analysis. World Journal of Gastroenterology, 13, 2608–2614.

    PubMed  CAS  Google Scholar 

  13. Shi, H. Y., Ge, J. B., Fang, W. Y., Yao, K., Sun, A. J., Huang, R. C., et al. (2008). Peroxisome proliferator-activated receptor alpha agonist attenuates oxidized-low density lipoprotein induced immune maturation of human monocyte-derived dendritic cells. Chinese Medical Journal, 121, 1747–1750.

    PubMed  Google Scholar 

  14. Zeng, Z., Wang, G. T., Xu, X. F., Long, J. H., Xin, J. J., Zhang, Y. Y., et al. (2006). Rheological and immunological character alterations of dendritic cells by suppressive factors from tumor cells microenvironment. Progress in Biochemistry and Biophysics, 33, 548–555.

    CAS  Google Scholar 

  15. Kiertscher, S. M., Luo, J., Dubinett, S. M., & Roth, M. D. (2000). Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. Journal of Immunology, 164, 1269–1276.

    CAS  Google Scholar 

  16. Yao, W. J., Chen, K., Wang, X. F., Xie, L. D., Wen, Z. Y., Yan, Z., et al. (2002). Influence of TRAIL gene on biomechanical cell line Jurkat. Journal of Biomechanics, 35, 1659–1663.

    Article  PubMed  Google Scholar 

  17. Xu, X. F., Zeng, Z., Yao, W. J., Wang, X. F., Sun, D. G., Ka, W. B., et al. (2010). Biomechanical alterations of dendritic cells by co-culturing with K562 CML cells and their potential role in immune escape. Journal of Biomechanics, 43, 2339–2347.

    Article  PubMed  Google Scholar 

  18. Yao, W. J., Gu, L., Sun, D. G., Ka, W. B., Wen, Z. Y., & Chien, S. (2003). Wild type p53 gene causes reorganization of cytoskeleton and, therefore, the impaired deformability and difficult migration of murine erythroleukemia cells. Cell Motility and the Cytoskeleton, 56, 1–12.

    Article  PubMed  CAS  Google Scholar 

  19. Stoll, S., Delon, J., Brotz, T. M., & Germain, R. N. (2002). Dynamic imaging of T-dendritic cells interaction in lymph nodes. Science, 296, 1873–1876.

    Article  PubMed  Google Scholar 

  20. Randolph, G. J., Angeli, V., & Swartz, M. A. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 5, 617–628.

    Article  PubMed  CAS  Google Scholar 

  21. Vicente-Manzanares, M., & Sánchez-Madrid, F. (2004). Role of the cytoskeleton during leukocyte responses. Nature Reviews Immunology, 4, 110–122.

    Article  PubMed  CAS  Google Scholar 

  22. Beemiller, P., & Krummel, M. F. (2010). Mediation of T-cell activation by actin meshworks. Cold Spring Harbor Perspectives in Biology, 2, a002444.

    Article  PubMed  Google Scholar 

  23. Strauss, L., Volland, D., Kunkel, M., & Reichert, T. E. (2005). Dual role of VEGF family members in the pathogenesis of head and neck cancer (HNSCC): possible link between angiogenesis and immune tolerance. Medical Science Monitor, 11, 280–292.

    Google Scholar 

  24. Yang, A. S., & Lattime, E. C. (2003). Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Research, 63, 2150–2157.

    PubMed  CAS  Google Scholar 

  25. Hilkens, C. M., Kalinski, P., de Boer, M., & Kapsenberg, M. L. (1997). Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype. Blood, 90, 1920–1926.

    PubMed  CAS  Google Scholar 

  26. Steinbrink, K., Jonuleit, H., Muller, G., Schuler, G., Knop, J., & Enk, A. H. (1999). Interleukin-10 treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood, 93, 1634–1642.

    PubMed  CAS  Google Scholar 

  27. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J., & Enk, A. H. (2002). CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood, 99, 2468–2476.

    Article  PubMed  CAS  Google Scholar 

  28. Li, X., Yang, A., Huang, H., Zhang, X., Town, J., Davis, B., et al. (2010). Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells. American Journal of Respiratory Cell and Molecular Biology, 42, 190–199.

    Article  PubMed  CAS  Google Scholar 

  29. McBride, J. M., Jung, T., de Vries, J. E., & Aversa, G. (2002). IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cellular Immunology, 215, 162–172.

    Article  PubMed  CAS  Google Scholar 

  30. Caux, C., Massacrier, C., Vanbervliet, B., Barthelemy, C., Liu, Y. J., & Banchereau, J. (1994). Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. International Immunology, 6, 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  31. Vicari, A. P., Chiodoni, C., Vaure, C., Aït-Yahia, S., Dercamp, C., Matsos, F., et al. (2002). Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. The Journal of Experimental Medicine, 196, 541–549.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, S., Yang, J., Qian, J., Wezeman, M., Kwak, L. W., & Yi, Q. (2006). Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood, 107, 2432–2439.

    Article  PubMed  CAS  Google Scholar 

  33. Brignole, C., Marimpietri, D., Pastorino, F., Di Paolo, D., Pagnan, G., Loi, M., et al. (2009). Anti-IL-10R antibody improves the therapeutic efficacy of targeted liposomal oligonucleotides. Journal of Controlled Release, 138, 122–127.

    Article  PubMed  CAS  Google Scholar 

  34. Singh, A., Qin, H., Fernandez, I., Wei, J., Lin, J., Kwak, L. W., et al. (2011). An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. Journal of Controlled Release. doi:10.1016/j.jconrel.2011.06.008.

  35. Singh, A., Suri, S., & Roy, K. (2009). In situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials, 30, 5187–5200.

    Article  PubMed  CAS  Google Scholar 

  36. Kuo, P. L., Hung, J. Y., Huang, S. K., Chou, S. H., Cheng, D. E., Jong, Y. J., et al. (2011). Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. Journal of Immunology, 186, 1521–1530.

    Article  CAS  Google Scholar 

  37. Zhao, F., Falk, C., Osen, W., Kato, M., Schadendorf, D., & Umansky, V. (2009). Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clinical Cancer Research, 15, 4382–4390.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundations of China (Grant Nos. 10572007 and 30770532).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijuan Yao or Zongyao Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Zhang, X., Du, Y. et al. Effects of Gekko Sulfated Polysaccharide–Protein Complex on the Defective Biorheological Characters of Dendritic Cells Under Tumor Microenvironment. Cell Biochem Biophys 62, 193–201 (2012). https://doi.org/10.1007/s12013-011-9282-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9282-5

Keywords

Navigation