Skip to main content
Log in

The Molecular Mechanism Underlying Morphine-Induced Akt Activation: Roles of Protein Phosphatases and Reactive Oxygen Species

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Although Akt is reported to play a role in morphine’s cardioprotection, little is known about the mechanism underlying morphine-induced Akt activation. This study aimed to define the molecular mechanism underlying morphine-induced Akt activation and to determine if the mechanism contributes to the protective effect of morphine on ischemia/reperfusion injury. In cardiac H9c2 cells, morphine increased Akt phosphorylation at Ser473, indicating that morphine upregulates Akt activity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling, was not involved in the action of morphine on Akt activity. Morphine decreased the activity of PP2A, a major protein Ser/Thr phosphatase, and inhibition of PP2A with okadaic acid (OA) mimicked the effect of morphine on Akt activity. The effects of morphine on PP2A and Akt activities were inhibited by the reactive oxygen species (ROS) scavenger N-(2-mercaptopropionyl)glycine (MPG) and the mitochondrial KATP channel closer 5-hydroxydecanoate (5HD). In support, morphine could produce ROS and this was reversed by 5HD. Finally, the cardioprotective effect of morphine on ischemia–reperfusion injury was mimicked by OA but was suppressed by 5HD or MPG, indicating that protein phosphatases and ROS are involved in morphine’s protection. In conclusion, morphine upregulates Akt activity by inactivating protein Ser/Thr phosphatases via ROS, which may contribute to the cardioprotective effect of morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gross, G. J. (2003). Role of opioids in acute and delayed preconditioning. Journal of Molecular and Cellular Cardiology, 35, 709–718.

    Article  PubMed  CAS  Google Scholar 

  2. Schultz, J. E., Hsu, A. K., & Gross, G. J. (1998). Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors. Circulation, 97, 1282–1289.

    PubMed  CAS  Google Scholar 

  3. Schultz, J. J., Hsu, A. K., Nagase, H., & Gross, G. J. (1998). TAN-67, a delta-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and Katp channels. American Journal of Physiology, 274, H909–H914.

    CAS  Google Scholar 

  4. Huh, J., Gross, G. J., Nagase, H., & BT, L. (2001). Protection of cardiac myocytes via delta(1)-opioid receptors, protein kinase C, and mitochondrial K(ATP) channels. American Journal of Physiology Heart and Circulatory Physiology, 280, H377–H383.

    PubMed  CAS  Google Scholar 

  5. Wu, S., Li, H.-Y., & Wong, T. M. (1999). Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Circulation Research, 84, 1388–1395.

    PubMed  CAS  Google Scholar 

  6. Wang, G. Y., Wu, S., Pei, J. M., Yu, X. C., & Wong, T. M. (2001). Kappa- but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. American Journal of Physiology Heart and Circulatory Physiology, 280, H384–H391.

    PubMed  CAS  Google Scholar 

  7. Miki, T., Cohen, M. V., & Downey, J. M. (1998). Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Molecular and Cellular Biochemistry, 186, 3–12.

    Article  PubMed  CAS  Google Scholar 

  8. Fryer, R. M., Wang, Y., Hsu, A. K., & Gross, G. J. (2001). Essential activation of PKC-delta in opioid-initiated cardioprotection. American Journal of Physiology Heart and Circulatory Physiology, 280, H1346–H1353.

    PubMed  CAS  Google Scholar 

  9. Liang, B. T., & Gross, G. J. (1999). Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circulation Research, 84, 1396–1400.

    PubMed  CAS  Google Scholar 

  10. Fryer, R. M., Schultz, J. E. J., Hsu, A. K., & Gross, G. J. (1998). Pretreatment with tyrosine kinase inhibitors partially attenuates ischemic preconditioning in rat hearts. American Journal of Physiology, 275, H2009–H2015.

    PubMed  CAS  Google Scholar 

  11. Fryer, R. M., Pratt, P. F., Hsu, A. K., & Gross, G. J. (2001). Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. Journal of Pharmacology and Experimental Therapeutics, 296, 642–649.

    PubMed  CAS  Google Scholar 

  12. Fryer, R. M., Hsu, A. K., & Gross, G. J. (2001). ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Research in Cardiology, 96, 136–142.

    Article  PubMed  CAS  Google Scholar 

  13. Gross, E. R., Hsu, A. K., & Gross, G. J. (2006). The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3beta. American Journal of Physiology, 291, H827–H834.

    PubMed  CAS  Google Scholar 

  14. Peart, J. N., & Gross, G. J. (2006). Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways. American Journal of Physiology, 291, H1746–H1753.

    PubMed  CAS  Google Scholar 

  15. Gross, E. R., Hsu, A. K., & Gross, G. J. (2007). Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes, 56, 127–136.

    Article  PubMed  CAS  Google Scholar 

  16. Cohen, M. V., Philipp, S., Krieg, T., Cui, L., Kuno, A., Solodushko, V., et al. (2007). Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. Journal of Molecular and Cellular Cardiology, 42, 842–851.

    Article  PubMed  CAS  Google Scholar 

  17. Forster, K., Kuno, A., Solenkova, N., Felix, S. B., & Krieg, T. (2007). The {delta}-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation. American Journal of Physiology, 293, H1604–H1608.

    PubMed  Google Scholar 

  18. Gross, E. R., Hsu, A. K., & Gross, G. J. (2004). Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circulation Research, 94, 960–966.

    Article  PubMed  CAS  Google Scholar 

  19. Matsui, T., & Rosenzweig, A. (2005). Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. Journal of Molecular and Cellular Cardiology, 38, 63–71.

    Article  PubMed  CAS  Google Scholar 

  20. Brazil, D. P., & Hemmings, B. A. (2001). Ten years of protein kinase B signalling: a hard Akt to follow. Trends in Biochemical Sciences, 26, 657–664.

    Article  PubMed  CAS  Google Scholar 

  21. Miyamoto, S., Murphy, A., & Brown, J. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169–180.

    Article  PubMed  CAS  Google Scholar 

  22. Mocanu, M. M., & Yellon, D. M. (2007). PTEN, the Achilles’ heel of myocardial ischaemia/reperfusion injury? British Journal of Pharmacology, 150, 833–838.

    Article  PubMed  CAS  Google Scholar 

  23. Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24, 186–191.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, S.-R., Yang, K.-S., Kwon, J., Lee, C., Jeong, W., & Rhee, S. G. (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. The Journal of Biological Chemistry, 277, 20336–20342.

    Article  PubMed  CAS  Google Scholar 

  25. Hausenloy, D. J., & Yellon, D. M. (2006). Survival kinases in ischemic preconditioning and postconditioning. Cardiovascular Research, 70, 240–253.

    Article  PubMed  CAS  Google Scholar 

  26. Jang, Y. G., Xi, J. K., Wang, H. H., Mueller, R. A., Norfleet, E. A., & Xu, Z. L. (2008). Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology, 108, 243–250.

    Article  PubMed  CAS  Google Scholar 

  27. Cai, Z., & Semenza, G. L. (2005). PTEN activity is modulated during ischemia and reperfusion: Involvement in the induction and decay of preconditioning. Circulation Research, 97, 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  28. Mensah, K., Mocanu, M. M., & Yellon, D. M. (2005). Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: A potential role for phosphatase and tensin homolog deleted on chromosome ten? Journal of the American College of Cardiology, 45, 1287–1291.

    Article  PubMed  CAS  Google Scholar 

  29. Gericke, A., Munson, M., & Ross, A. H. (2006). Regulation of the PTEN phosphatase. Gene, 374, 1–9.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, M. V., Yang, X.-M., Liu, G. S., Heusch, G., & Downey, J. M. (2001). Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circulation Research, 89, 273–278.

    Article  PubMed  CAS  Google Scholar 

  31. Vanhaesebroeck, B., & Alessi, D. R. (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochemical Journal, 346, 561–576.

    Article  PubMed  CAS  Google Scholar 

  32. Barthel, A., & Klotz, L. O. (2005). Phosphoinositide 3-kinase signaling in the cellular response to oxidative stress. Biological Chemistry, 386, 207–216.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen, P. T. W. (1997). Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends in Biochemical Sciences, 22, 245–251.

    Article  PubMed  CAS  Google Scholar 

  34. Weinbrenner, C., Baines, C. P., Liu, G.-S., Armstrong, S. C., Ganote, C. E., Walsh, A. H., et al. (1998). Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia. Circulation, 98, 899–905.

    PubMed  CAS  Google Scholar 

  35. Armstrong, S. C., & Ganote, C. E. (1992). Effects of the protein phosphatase inhibitors okadaic acid and calyculin A on metabolically inhibited and ischaemic isolated myocytes. Journal of Molecular and Cellular Cardiology, 24, 869–884.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, S., Chanoit, G., McIntosh, R., Zvara, D. A., & Xu, Z. L. (2009). Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. American Journal of Physiology, 297, H569–H575.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, L., Liu, L., & Huang, S. (2008). Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radical Biology and Medicine, 45, 1035–1044.

    Article  PubMed  CAS  Google Scholar 

  38. Whisler, R. L., Goyette, M. A., Grants, I. S., & Newhouse, Y. G. (1995). Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Archives of Biochemistry and Biophysics, 319, 23–35.

    Article  PubMed  CAS  Google Scholar 

  39. Downey, J., Davis, A., & Cohen, M. (2007). Signaling pathways in ischemic preconditioning. Heart Failure Reviews, 12, 181–188.

    Article  PubMed  CAS  Google Scholar 

  40. Fryer, R. M., Schultz, J. E. J., Hsu, A. K., & Gross, G. J. (1999). Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. American Journal of Physiology, 276, H1229–H1235.

    PubMed  CAS  Google Scholar 

  41. Yang, X., Cohen, M., & Downey, J. (2010). Mechanism of cardioprotection by early ischemic preconditioning. Cardiovascular Drugs and Therapy, 24, 225–234.

    Article  PubMed  Google Scholar 

  42. Yue, Y., Qin, Q., Cohen, M. V., Downey, J. M., & Critz, S. D. (2002). The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning’s protective pathway in rat heart. Cardiovascular Research, 55, 681–689.

    Article  PubMed  CAS  Google Scholar 

  43. Oldenburg, O., Qin, Q., Sharma, A., Cohen, M., Downey, J., & Benoit, J. (2002). Acetylcholine leads to free radical production dependent on K(ATP) channels, G(i) proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovascular Research, 55, 544–552.

    Article  PubMed  CAS  Google Scholar 

  44. Oldenburg, O., Qin, Q., Krieg, T., Yang, X. M., Philipp, S., Critz, S. D., et al. (2003). Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mKATP channel opening and leads to cardioprotection. American Journal of Physiology Heart and Circulatory Physiology, 286, H468–H476.

    Article  PubMed  Google Scholar 

  45. McPherson, B. C., & Yao, Z. (2001). Morphine mimics preconditioning via free radical signals and mitochondrial KATP channels in myocytes. Circulation, 103, 290–295.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant 2007136 from Bureau of Education, Hebei Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhelong Xu.

Additional information

Jingman Xu, Wei Tian, and Xiaolong Ma contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Tian, W., Ma, X. et al. The Molecular Mechanism Underlying Morphine-Induced Akt Activation: Roles of Protein Phosphatases and Reactive Oxygen Species. Cell Biochem Biophys 61, 303–311 (2011). https://doi.org/10.1007/s12013-011-9213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9213-5

Keywords

Navigation