Abstract
Small interfering RNA (siRNA) molecules have great potential for developing into a future therapy for breast cancer. To overcome the issues related to rapid degradation and low transfection of naked siRNA, polyethylenimine (PEI)-coated human serum albumin (HSA) nanoparticles have been characterized and studied here for efficient siRNA delivery to the MCF-7 breast cancer cell line. The optimized nanoparticles were ~90 nm in size, carrying a surface charge of +26 mV and a polydispersity index (PDI) less than 0.25. The shape and morphology of the particles was studied using electron microscopy. A cytotoxicity assessment of the nanoparticles showed no correlation of cytotoxicity with HSA concentration, while using high molecular weight PEI (MW of 70 against 25 kDa) showed higher cytotoxicity. The optimal transfection achieved of fluorescin-tagged siRNA loaded into PEI-coated HSA nanoparticles was 61.66 ± 6.8%, prepared with 6.25 μg of PEI (25 kDa) added per mg of HSA and 20 mg/ml HSA, indicating that this nonviral vector may serve as a promising gene delivery system.
This is a preview of subscription content, access via your institution.








References
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics, 2008. CA: A Cancer Journal for Clinicians, 58(2), 71–96.
Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer Statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300.
Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. O., et al. (2006). RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Molecular Therapy, 14(4), 476–484.
Liu, X., Howard, K. A., Dong, M., Andersen, M. Ø., Rahbek, U. L., Johnsen, M. G., et al. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 28(6), 1280–1288.
Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., et al. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Research, 32(19), e149.
Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., & Aigner, A. (2004). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy, 12(5), 461–466.
Patil, Y., & Panyam, J. (2009). Polymeric nanoparticles for siRNA delivery and gene silencing. International Journal of Pharmaceutics, 367(1–2), 195–203.
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498.
Bumcrot, D., Manoharan, M., Koteliansky, V., & Sah, D. W. Y. (2006). RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2(12), 711–719.
Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267(1), 44–53.
Zhang, S., Zhao, B., Jiang, H., Wang, B., & Ma, B. (2007). Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release, 123(1), 1–10.
Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.
Templeton, N., & Lasic, D. (1999). New directions in liposome gene delivery. Molecular Biotechnology, 11(2), 175–180.
Gaumet, M., Vargas, A., Gurny, R., & Delie, F. (2008). Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 1–9.
Panyam, J., & Labhasetwar, V. (2003). Dynamics of endocytosis and exocytosis of poly(d, l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharmaceutical Research, 20(2), 212–220.
Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183.
Wang, G., Siggers, K., Zhang, S., Jiang, H., Xu, Z., Zernicke, R., et al. (2008). Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharmaceutical Research, 25(12), 2896–2909.
Lü, J. M., Wang, X., Marin-Muller, C., Wang, H., Lin, P. H., Yao, Q., et al. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9(4), 325–341.
Liu, Y., Miyoshi, H., & Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 120(12), 2527–2537.
Lin, W., Coombes, A. G. A., Davies, M. C., Davis, S. S., & Illum, L. (1993). Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. Journal of Drug Targeting, 1(3), 237–243.
Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., & Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257(1–2), 169–180.
Douglas, J. (2007). Adenoviral vectors for gene therapy. Molecular Biotechnology, 36(1), 71–80.
Vorburger, S. A., & Hunt, K. K. (2002). Adenoviral gene therapy. The Oncologist, 7(1), 46–59.
Paul, A., Jardin, B., Kulamarva, A., Malhotra, M., Elias, C., & Prakash, S. (2010). Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Molecular Biotechnology, 45(2), 129–139.
Wartlick, H., SpΣnkuch-Schmitt, B., Strebhardt, K., Kreuter, J. R., & Langer, K. (2004). Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. Journal of Controlled Release, 96(3), 483–495.
Arshady, R. (1990). Albumin microspheres and microcapsules: methodology of manufacturing techniques. Journal of Controlled Release, 14(2), 111–131.
Leo, E., Angela Vandelli, M., Cameroni, R., & Forni, F. (1997). Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. International Journal of Pharmaceutics, 155(1), 75–82.
Segura, S., Espuelas, S., Renedo, M. J., & Irache, J. M. (2005). Potential of albumin nanoparticles as carriers for interferon gamma. Drug Development and Industrial Pharmacy, 31(3), 271–280.
Zhang, S., Wang, G., Lin, X., Chatzinikolaidou, M., Jennissen, H. P., Laub, M., et al. (2008). Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnology Progress, 24(4), 945–956.
Rhaese, S., von Briesen, H., Rübsamen-Waigmann, H., Kreuter, J., & Langer, K. (2003). Human serum albumin–polyethylenimine nanoparticles for gene delivery. Journal of Controlled Release, 92(1–2), 199–208.
Prabha, S., Zhou, W. Z., Panyam, J., & Labhasetwar, V. (2002). Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. International Journal of Pharmaceutics, 244(1–2), 105–115.
Yin Win, K., & Feng, S. S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713–2722.
Helander, I. M., Alakomi, H. L., Latva-Kala, K., & Koski, P. (1997). Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology, 143(10), 3193–3199.
Zauner, W., Farrow, N. A., & Haines, A. M. R. (2001). In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, 71(1), 39–51.
Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharmaceutical Research, 14(11), 1568–1573.
Acknowledgments
This work is supported by research grant to Satya Prakash from Canadian Institute of Health Research (CIHR) (MOP 93641), Canada. Sana Abbasi is supported by the McGill Faculty of Medicine Internal Studentship—G. G. Harris Fellowship. Arghya Paul acknowledges the financial support from NSERC Alexander Graham Bell Canada Graduate Scholarship. The authors are grateful for the assistance provided for TEM imaging by Dr. Xue-Dong Liu, McGill, Department of Physics.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abbasi, S., Paul, A. & Prakash, S. Investigation of siRNA-Loaded Polyethylenimine-Coated Human Serum Albumin Nanoparticle Complexes for the Treatment of Breast Cancer. Cell Biochem Biophys 61, 277–287 (2011). https://doi.org/10.1007/s12013-011-9201-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12013-011-9201-9