Skip to main content

Advertisement

Log in

Study on the Relationship Between TSHR Gene and Thyroid Diseases

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Thyroid stimulating hormone receptor (TSHR) is thought to play a critical role in the pathogenesis of certain thyroid diseases, including Graves’ disease (GD), multinodular thyroid goiter (MTG), and Hashimoto’s thyroiditis (HT). In order to understand whether single nucleotide polymorphisms in the TSHR gene contribute to thyroid diseases, we have conducted a case–control study in which, we examined 8 TSHR gene single-nucleotide polymorphisms in introns 1, 4, 5, 6 and exons 7 and 8, respectively, among patients with thyroid diseases. These included one family with GD (3 patients and 9 healthy members); 60 patients with familiar thyroid diseases (30 with GD, 20 with MTG, and 10 with HT patients), 48 sporadic patients with GD and 96 healthy control individuals. Direct sequencing of all 10 exons and part of introns of TSHR gene, in these patients as well as healthy controls revealed eight polymorphisms. A novel polymorphism in exon 8 AGA(Arg) → CGA(Arg). However, there were no significant differences between patients and controls in the incidence of these polymorphisms. These results suggest that the polymorphisms (polymorphism in intron 1 at 81 bp upstream of exon 2; polymorphism in intron 4 at 135 bp upstream of exon 5; polymorphism in intron 4 at 365 bp upstream of exon 5; polymorphism in intron 5 at 69 bp upstream of exon 6; means polymorphism in intron 6 at 13 bp downstream of exon 6; polymorphism in intron 6 at 187 bp upstream of exon 7; E7+16: polymorphism in 16 bp of exon 7; polymorphism in 40 bp of exon 8) of the TSHR gene may not contribute to the pathogenesis of thyroid diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tomer, Y. (2010). Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid, 20, 715–725.

    Article  CAS  PubMed  Google Scholar 

  2. Patrick, L. (2009). Thyroid disruption: mechanism and clinical implications in human health. Alternative Medicine Review, 14, 326–346.

    PubMed  Google Scholar 

  3. Brent, G. A. (2010). Environmental exposures and autoimmune thyroid disease. Thyroid, 20, 755–761.

    Article  PubMed  Google Scholar 

  4. Palos-Paz, F., Perez-Guerra, O., Cameselle-Teijeiro, J., Rueda-Chimeno, C., Barreiro-Morandeira, F., et al. (2008). Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain. European Journal of Endocrinology, 159, 623–631.

    Article  CAS  PubMed  Google Scholar 

  5. Liewendahl, K. (1990). Assessment of thyroid status by laboratory methods: developments and perspectives. Scandinavian Journal of Clinical and Laboratory Investigation. Supplement, 201, 83–92.

    Article  CAS  PubMed  Google Scholar 

  6. Rivolta, C. M., Moya, C. M., Esperante, S. A., Gutnisky, V. J., Varela, V., et al. (2005). The thyroid as a model for molecular mechanisms in genetic diseases. Medicina (B Aires), 65, 257–267.

    CAS  Google Scholar 

  7. Davies, T. F., Yin, X., & Latif, R. (2010). The genetics of the thyroid stimulating hormone receptor: History and relevance. Thyroid, 20, 727–736.

    Article  CAS  PubMed  Google Scholar 

  8. Bahn, R. S., Dutton, C. M., Heufelder, A. E., & Sarkar, G. (1994). A genomic point mutation in the extracellular domain of the thyrotropin receptor in patients with Graves’ ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 78, 256–260.

    Article  CAS  PubMed  Google Scholar 

  9. Cuddihy, R. M., Dutton, C. M., & Bahn, R. S. (1995). A polymorphism in the extracellular domain of the thyrotropin receptor is highly associated with autoimmune thyroid disease in females. Thyroid, 5, 89–95.

    Article  CAS  PubMed  Google Scholar 

  10. Wilkin, T. J. (1990). Receptor autoimmunity in endocrine disorders. New England Journal of Medicine, 323, 1318–1324.

    Article  CAS  PubMed  Google Scholar 

  11. Wilkin, T. J. (1990). The primary lesion theory of autoimmunity: a speculative hypothesis. Autoimmunity, 7, 225–235.

    Article  CAS  PubMed  Google Scholar 

  12. Nagayama, Y., Kaufman, K. D., Seto, P., & Rapoport, B. (1989). Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochemical and Biophysical Research Communications, 165, 1184–1190.

    Article  CAS  PubMed  Google Scholar 

  13. Parmentier, M., Libert, F., Maenhaut, C., Lefort, A., Gerard, C., et al. (1989). Molecular cloning of the thyrotropin receptor. Science, 246, 1620–1622.

    Article  CAS  PubMed  Google Scholar 

  14. Rousseau-Merck, M. F., Misrahi, M., Loosfelt, H., Atger, M., Milgrom, E., et al. (1990). Assignment of the human thyroid stimulating hormone receptor (TSHR) gene to chromosome 14q31. Genomics, 8, 233–236.

    Article  CAS  PubMed  Google Scholar 

  15. Dumont, J. E., Lamy, F., Roger, P., & Maenhaut, C. (1992). Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiological Reviews, 72, 667–697.

    CAS  PubMed  Google Scholar 

  16. Hidaka, A., Okajima, F., Ban, T., Kosugi, S., Kondo, Y., et al. (1993). Receptor cross-talk can optimize assays for autoantibodies to the thyrotropin receptor: effect of phenylisopropyladenosine on adenosine 3’, 5’-monophosphate and inositol phosphate levels in rat FRTL-5 thyroid cells. Journal of Clinical Endocrinology and Metabolism, 77, 1164–1169.

    Article  CAS  PubMed  Google Scholar 

  17. Parma, J., Duprez, L., Van Sande, J., Cochaux, P., Gervy, C., et al. (1993). Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature, 365, 649–651.

    Article  CAS  PubMed  Google Scholar 

  18. Paschke, R., & Ludgate, M. (1997). The thyrotropin receptor in thyroid diseases. New England Journal of Medicine, 337, 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  19. Fuhrer, D., Warner, J., Sequeira, M., Paschke, R., Gregory, J., et al. (2000). Novel TSHR germline mutation (Met463Val) masquerading as Graves’ disease in a large Welsh kindred with hyperthyroidism. Thyroid, 10, 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  20. Corvilain, B., Van Sande, J., Dumont, J. E., & Vassart, G. (2001). Somatic and germline mutations of the TSH receptor and thyroid diseases. Clinical Endocrinology (Oxford), 55, 143–158.

    CAS  Google Scholar 

  21. Wonerow, P., Neumann, S., Gudermann, T., & Paschke, R. (2001). Thyrotropin receptor mutations as a tool to understand thyrotropin receptor action. Journal of Molecular Medicine, 79, 707–721.

    Article  CAS  PubMed  Google Scholar 

  22. Rodien, P., Ho, S. C., Vlaeminck, V., Vassart, G., & Costagliola, S. (2003). Activating mutations of TSH receptor. Annales Endocrinology (Paris), 64, 12–16.

    CAS  Google Scholar 

  23. Duprez, L., Parma, J., Van Sande, J., Allgeier, A., Leclere, J., et al. (1994). Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nature Genetics, 7, 396–401.

    Article  CAS  PubMed  Google Scholar 

  24. Sunthornthepvarakui, T., Gottschalk, M. E., Hayashi, Y., & Refetoff, S. (1995). Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. New England Journal of Medicine, 332, 155–160.

    Article  CAS  PubMed  Google Scholar 

  25. Russo, D., Arturi, F., Schlumberger, M., Caillou, B., Monier, R., et al. (1995). Activating mutations of the TSH receptor in differentiated thyroid carcinomas. Oncogene, 11, 1907–1911.

    CAS  PubMed  Google Scholar 

  26. Tonacchera, M., & Pinchera, A. (2000). Thyrotropin receptor polymorphisms and thyroid diseases. Journal of Clinical Endocrinology and Metabolism, 85, 2637–2639.

    Article  CAS  PubMed  Google Scholar 

  27. Derwahl, M. (1996). TSH receptor and Gs-alpha gene mutations in the pathogenesis of toxic thyroid adenomas—a note of caution. Journal of Clinical Endocrinology and Metabolism, 81, 2783–2785.

    Article  CAS  PubMed  Google Scholar 

  28. Derwahl, M., Hamacher, C., Russo, D., Broecker, M., Manole, D., et al. (1996). Constitutive activation of the Gs alpha protein-adenylate cyclase pathway may not be sufficient to generate toxic thyroid adenomas. Journal of Clinical Endocrinology and Metabolism, 81, 1898–1904.

    Article  CAS  PubMed  Google Scholar 

  29. Ban, Y., Greenberg, D. A., Concepcion, E. S., & Tomer, Y. (2002). A germline single nucleotide polymorphism at the intracellular domain of the human thyrotropin receptor does not have a major effect on the development of Graves’ disease. Thyroid, 12, 1079–1083.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shanghai (11ZR1429500) and the health system key discipline group of pudong New District (PWZxkq2010-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Li Shao, HuaJiang, and Jun Liang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, L., Jiang, H., Liang, J. et al. Study on the Relationship Between TSHR Gene and Thyroid Diseases. Cell Biochem Biophys 61, 377–382 (2011). https://doi.org/10.1007/s12013-011-9194-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9194-4

Keywords

Navigation