Skip to main content

Advertisement

Log in

Differential Response of the Urothelial V-ATPase Activity to the Lipid Environment

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The vesicle population beneath the apical plasma membrane of the most superficial urothelial cells is heterogeneous and their traffic and activity seems to be dependent on their membrane composition and inversely related to their development stage. Although the uroplakins, the major proteins of the highly differentiated urinary bladder umbrella cells, can maintain the bladder permeability barrier, the role of the membrane lipid composition still remains elusive. We have recently reported the lipid induced leakage of the vesicular content as a path of diversion in the degradative pathway. To extend the knowledge on how the lipid environment can affect vesicular acidification and membrane traffic through the regulation of the V-ATPase (vacuolar ATPase), we studied the proton translocation and ATP hydrolytic capacity of endocytic vesicles having different lipid composition obtained from rats fed with 18:1n-9 and 18:2n-6 fatty acid enriched diets. The proton translocation rate decreases while the enzymatic activity increases in oleic acid-rich vesicles (OAV), revealing an uncoupled state of V-ATPase complex which was further demonstrated by Western Blotting. A decrease of the very long fatty acyl chains length (C20–C24) and increase of the C16–C18 chains length in OAV membranes was observed, concomitant with increased hydrolytic activity of the V-ATPase. This response of the urothelial V-ATPase was similar to that of the Na–K ATPase when the activity of the latter was probed in reconstituted systems with lipids bearing different lengths of fatty acid chains. The studies describe for the first time a lipid composition-dependent activity of the urothelial V-ATPase, identified by immunofluorescence microscopy which is related to an effective coupling between the channel proton flux and ATP hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

V-ATPase:

Vacuolar ATPase

AUM:

Asymmetric membrane unit

ATP:

Adenosine 5′-triphosphate

FITC:

Fluorescein isothiocyanate

PK/LDH:

Piruvate kinase/lactate dehydrogenase

NADH:

Reduced nicotinamide-adenine dinucleotide

PEP:

Phospho-enol-piruvate

CV:

Control vesicles

LAV:

Linoleic acid derived vesicles

OAV:

Oleic acid derived vesicles

VLCFAs:

Very long chain fatty acids

VLCPUFAs:

Very long chain unsaturated fatty acids

LCFAs:

Long chain fatty acids

References

  1. Hicks, M. (1975). The mammalian urinary bladder: An accommodating organ. Biological Review, 50, 215–246.

    CAS  Google Scholar 

  2. Lewis, S. A. (2000). Everything you wanted to know about the bladder epithelium but were afraid to ask. American Journal of Physiology, 278, F867–F874.

    PubMed  CAS  Google Scholar 

  3. Khandelwal, P., Ruiz, W. G., & Apodaca, G. (2010). Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoA- and dynamin-dependent pathway. The EMBO Journal, 29, 1961–1975.

    Article  PubMed  CAS  Google Scholar 

  4. Apodaca, G. (2004). The uroepithelium: Not just a passive barrier. Traffic, 5, 117–128.

    Article  PubMed  CAS  Google Scholar 

  5. Guo, X., Tu, L., Gumper, I., Plesken, H., Novak, E. K., Chintala, S., et al. (2009). Involvement of Vps33a in the fusion of uroplakin-degrading multivesicular bodies with lysosomes. Traffic, 10(9), 1350–1361.

    Article  PubMed  CAS  Google Scholar 

  6. Kreft, M. E., Jezernik, K., Kreft, M., & Romih, R. (2009). Apical plasma membrane traffic in superficial cells of bladder urothelium. Annals of the New York Academy of Sciences, 1152, 18–29.

    Article  PubMed  Google Scholar 

  7. Kreft, M. E., Romih, R., Kreft, M., & Jezernik, K. (2009). Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation, 77, 48–59.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, S. X., & Seguchi, H. (1994). The fate of the luminal asymmetric unit membrane of the superficial cell of the rat transitional epithelium. Histology and Histopathology, 9, 315–323.

    PubMed  CAS  Google Scholar 

  9. Truschel, S. T., Wang, E., Ruiz, W. G., Leung, S. M., Rojas, R., Lavelle, J., et al. (2002). Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Molecular Biology of the Cell, 13, 830–846.

    Article  PubMed  CAS  Google Scholar 

  10. Grasso, E. J., & Calderon, R. O. (2009). Urinary bladder membrane permeability differentially induced by membrane lipid composition. Molecular and Cellular Biochemistry, 330, 163–169.

    Article  PubMed  CAS  Google Scholar 

  11. Calderon, R. O., Glocker, M., & Eynard, A. R. (1998). Lipid and fatty acid composition of different fractions from rat urinary transitional epithelium. Lipids, 33, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  12. Calderon, R. O., & Eynard, A. R. (2000). Fatty acids specifically related to anisotropic properties of plasma membranes from rat urothelium. Biochimica et Biophysica Acta, 1483, 174–184.

    PubMed  CAS  Google Scholar 

  13. Bongiovanni, G. A., Eynard, A. R., & Calderón, R. O. (2005). Altered lipid profile and changes in uroplakin properties of rat urothelial plasma membrane with diets of different lipid composition. Molecular and Cellular Biochemistry, 271(1–2), 69–75.

    Article  PubMed  CAS  Google Scholar 

  14. Calderon, R. O., & Grasso, E. J. (2006). Symmetric array of the urothelium surface controlled by the lipid lattice composition. Biochemical and Biophysical Research Communications, 339, 642–646.

    Article  PubMed  CAS  Google Scholar 

  15. O’Callaghan, K. M., Ayllon, V., O’Keeffe, J., Wang, Y., Cox, O. T., Loughran, G., et al. (2010). Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. The Journal of Biological Chemistry, 285(1), 381–391.

    Article  PubMed  Google Scholar 

  16. Tomochika, K., Shinoda, S., Kumon, H., Mori, M., Moriyama, Y., & Futai, M. (1997). Vacuolar-type H(+)-ATPase in mouse bladder epithelium is responsible for urinary acidification. FEBS Letters, 404(1), 61–64.

    Article  PubMed  CAS  Google Scholar 

  17. Cipriano, D. J., Wang, Y., Bond, S., Hinton, A., Jefferies, K. C., Qi, J., et al. (2008). Structure and regulation of the vacuolar ATPases. Biochimica et Biophysica Acta, 1777, 599–604.

    Article  PubMed  CAS  Google Scholar 

  18. Crider, B. P., & Xie, X. S. (2003). Characterization of the functional coupling of bovine brain Vacuolar-type H+-translocating ATPase. The Journal of Biological Chemistry, 278(45), 44281–44288.

    Article  PubMed  CAS  Google Scholar 

  19. Chung, J. H., Lester, R. L., & Dickson, R. C. (2003). Sphingolipid requirement for generation of a functional V1 component of the vacuolar ATPase. The Journal of Biological Chemistry, 278(31), 28872–28881.

    Article  PubMed  CAS  Google Scholar 

  20. Straubinger, R. M., Papahadjopoulos, D., & Hong, K. (1990). Endocytosis and Intracellular fate of liposomes using pyranine as a probe. Biochemistry, 29, 4929–4939.

    Article  PubMed  CAS  Google Scholar 

  21. Chang, A., Hammond, T. G., Sun, S. T., & Zeidel, M. L. (1994). Permeability properties of the mammalian bladder apical membrane. American Journal of Physiology, 267, 1483–1492.

    Google Scholar 

  22. Lewis, S., & de Moura, J. (1982). Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature, 297, 685–688.

    Article  PubMed  CAS  Google Scholar 

  23. de Lima Santos, H., Lopes, M. L., Maggio, B., & Ciancaglini, P. (2005). Na, K-ATPase reconstituted in liposomes: Effects of lipid composition on hydrolytic activity and enzyme orientation. Colloids and Surfaces B: Biointerfaces, 41, 239–248.

    Article  Google Scholar 

  24. Kane, P. M., Kuehn, M. C., Howald-Stevenson, I., & Stevens, T. H. (1992). Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. The Journal of Biological Chemistry, 267(1), 447–454.

    PubMed  CAS  Google Scholar 

  25. Folch, J., Lees, M., & Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226, 497–508.

    PubMed  CAS  Google Scholar 

  26. Cantellops, D., Reid, A. P., Eitenmiller, R. R., & Long, A. R. (1999). Determination of lipids in infant formula powder by direct extraction methylation of lipids and fatty acid methyl esters (FAME) analysis by gas chromatography. Journal of AOAC International, 82, 1128–1139.

    PubMed  CAS  Google Scholar 

  27. Lowry, R. O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  28. Overly, C. C., Lee, K. D., Berthiaume, E., & Hollenbeck, P. J. (1995). Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3156–3160.

    Article  PubMed  CAS  Google Scholar 

  29. Lafourcade, C., Sobo, K., Kieffer-Jaquinod, S., Garin, J., & van der Goot, F. G. (2008). Regulation of the V-ATPasa along the endocytic pathway occurs through reversible subunit association and membrane localization. Plos One, 3(7), e2758.

    Article  PubMed  Google Scholar 

  30. Sumbilla, C., Lewis, D., Hammerschmidt, T., & Inesi, G. (2002). The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. The Journal of Biological Chemistry, 277(16), 13900–13906.

    Article  PubMed  CAS  Google Scholar 

  31. Shao, E., & Forgac, M. (2004). Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. The Journal of Biological Chemistry, 279, 48663–48670.

    Article  PubMed  CAS  Google Scholar 

  32. Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta, 1666, 62–87.

    Article  PubMed  CAS  Google Scholar 

  33. Caffrey, M., & Feigenson, G. W. (1981). Fluorescence quenching in model membranes: 3 Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholine with different acyl chain characteristics. Biochemistry, 20, 1949–1961.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, A. G. (2003). Lipid-protein interactions in biological membranes: A structural perspective. Biochimica et Biophysica Acta, 1612, 1–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from SECYT-UNC and CONICET, Argentina. E.J. Grasso is a doctoral fellow of CONICET, Argentina. We are grateful to Mariana Piegari and Gina Mazzudulli for their technical assistance and to Dr. Pietro Ciancaglini for the kind gift of P-ATPase inhibitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Calderón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasso, E.J., Scalambro, M.B. & Calderón, R.O. Differential Response of the Urothelial V-ATPase Activity to the Lipid Environment. Cell Biochem Biophys 61, 157–168 (2011). https://doi.org/10.1007/s12013-011-9172-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9172-x

Keywords

Navigation