Skip to main content
Log in

The “Multi” of Drug Resistance Explained by Oscillating Drug Transporters, Drug–Membrane Physical Interactions and Spatial Dimensionality

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Multi-drug resistance (MDR) can be explained by a drug handling-type activity. In this context it is also necessary to consider the multi-specificity between drugs and drug transporters in order to explain MDR. Accordingly, the efficiency of drug efflux in MDR has always been a conceptual problem in biochemistry. Indeed, how one protein can expel, from cells, hundreds of compounds with high specificity is still controversial today. To safeguard the notion of biochemical specificity, many studies have suggested alternative mechanisms to Pgp-mediated drug resistance, which do not involve the handling of drugs. However, none of these studies have definitively ruled out the possibility concept of drug handling. Thus, until now it was not possible to imagine MDR without drug-transporter affinity or specificity. However, drug-transporter affinity is not always needed to generate what appears to be a very efficient chemical reaction. Indeed, based on the fact that bi-dimensional diffusion properties (i.e. diffusion in the membrane) are paramount to explain drug pumping-mediated MDR, it is possible to suggest how specific mathematical properties of random motions can be used to construct a model of Pgp-MDR, providing that Pgp oscillates between open/drug-accepting and closed/drug-expelling conformations. This different viewpoint highlights the fact that the multi-specificity of drug transporters and the “vacuum cleaner” hypothesis may actually be two sides of the same coin, both explained by the diffusion properties of drugs in the membrane. After retrieving basic results, predictions will be highlighted. Finally, the coherence of this model in the context of cancer biology will be discussed further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. As explained in the paragraph “drug meeting transporters: a toy model”: \( N\,\sim \,\left( {DT/h^{2} } \right)/\ln \left( {DT/h^{2} } \right) \), which implies that \( \tilde{N}/N\,\sim \,\left( {\tilde{T}/T} \right) \times \left[ {\ln \left( {D\tilde{T}/h^{2} } \right)/\ln \left( {DT/h^{2} } \right)} \right] \). The first-order development of the latter relation provides the result expected.

References

  1. Aanismaa, P., & Seelig, A. (2007). P-Glycoprotein kinetics measured in plasma membrane vesicles and living cells. Biochemistry, 46, 3394–3404.

    Article  PubMed  Google Scholar 

  2. Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 323, 1718–1722.

    Article  PubMed  CAS  Google Scholar 

  3. Bennis, S., Faure, P., Chapey, C., Hu, Y. P., Fourche, J., El Yamani, J., et al. (1997). Cellular pharmacology of lipophilic anthracyclines in human tumor cells in culture selected for resistance to doxorubicin. Anticancer Drugs, 8, 610–617.

    Article  PubMed  CAS  Google Scholar 

  4. Dano, K. (1973). Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochimica et Biophysica Acta, 323, 466–483.

    Article  PubMed  CAS  Google Scholar 

  5. Daune, M. (1993). Biophysique moleculaire. Paris: InterEditions.

    Google Scholar 

  6. Doige, C. A., Yu, X., & Sharom, F. J. (1993). The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochimica et Biophysica Acta, 1146, 65–72.

    Article  PubMed  CAS  Google Scholar 

  7. Eytan, G. D. (2005). Mechanism of multidrug resistance in relation to passive membrane permeation. Biomedicine and Pharmacotherapy, 59, 90–97.

    Article  CAS  Google Scholar 

  8. Facchetti, I., Grandi, M., Cucchi, P., Geroni, C., Penco, S., & Vigevani, A. (1991). Influence of lipophilicity on cytotoxicity of anthracyclines in LoVo and LoVo/Dx human cell lines. Anticancer Drug Des, 6, 385–397.

    PubMed  CAS  Google Scholar 

  9. Ferte, J. (2000). Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. European Journal of Biochemistry, 267, 277–294.

    Article  PubMed  CAS  Google Scholar 

  10. Friche, E., Jensen, P. B., Roed, H., Skovsgaard, T., & Nissen, N. I. (1990). In vitro circumvention of anthracycline–resistance in Ehrlich ascites tumour by anthracycline analogues. Biochemical Pharmacology, 39, 1721–1726.

    Article  PubMed  CAS  Google Scholar 

  11. Friche, E., Demant, E. J., Sehested, M., & Nissen, N. I. (1993). Effect of anthracycline analogs on photolabelling of p-glycoprotein by [125I]iodomycin and [3H]azidopine: Relation to lipophilicity and inhibition of daunorubicin transport in multidrug resistant cells. British Journal of Cancer, 67, 226–231.

    Article  PubMed  CAS  Google Scholar 

  12. Gatlik-Landwojtowicz, E., Aanismaa, P., & Seelig, A. (2004). The rate of P-glycoprotein activation depends on the metabolic state of the cell. Biochemistry, 43, 14840–14851.

    Article  PubMed  CAS  Google Scholar 

  13. Gatlik-Landwojtowicz, E., Aanismaa, P., & Seelig, A. (2006). Quantification and characterization of P-glycoprotein–substrate interactions. Biochemistry, 45, 3020–3032.

    Article  PubMed  CAS  Google Scholar 

  14. Gosland, M. P., Lum, B. L., & Sikic, B. I. (1989). Reversal by cefoperazone of resistance to etoposide, doxorubicin, and vinblastine in multidrug resistant human sarcoma cells. Cancer Research, 49, 6901–6905.

    PubMed  CAS  Google Scholar 

  15. Gottesman, M. M., Ambudkar, S. V., & Xia, D. (2009). Structure of a multidrug transporter. Nature Biotechnology, 27, 546–547.

    Article  PubMed  CAS  Google Scholar 

  16. Hofsli, E., & Nissen-Meyer, J. (1990). Reversal of multidrug resistance by lipophilic drugs. Cancer Research, 50, 3997–4002.

    PubMed  CAS  Google Scholar 

  17. Juliano, R. L., & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochimica et Biophysica Acta, 455, 152–162.

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan, O., Jaroszewski, J. W., Clarke, R., Fairchild, C. R., Schoenlein, P., Goldenberg, S., et al. (1991). The multidrug resistance phenotype: 31P nuclear magnetic resonance characterization and 2-deoxyglucose toxicity. Cancer Research, 51, 1638–1644.

    PubMed  CAS  Google Scholar 

  19. Lampidis, T. J., Kolonias, D., Podona, T., Israel, M., Safa, A. R., Lothstein, L., et al. (1997). Circumvention of P-GP MDR as a function of anthracycline lipophilicity and charge. Biochemistry, 36, 2679–2685.

    Article  PubMed  CAS  Google Scholar 

  20. Landwojtowicz, E., Nervi, P., & Seelig, A. (2002). Real-time monitoring of P-glycoprotein activation in living cells. Biochemistry, 41, 8050–8057.

    Article  PubMed  CAS  Google Scholar 

  21. Litman, T., Nielsen, D., Skovsgaard, T., Zeuthen, T., & Stein, W. D. (1997). ATPase activity of P-glycoprotein related to emergence of drug resistance in Ehrlich ascites tumor cell lines. Biochimica et Biophysica Acta, 1361, 147–158.

    PubMed  CAS  Google Scholar 

  22. Litman, T., Zeuthen, T., Skovsgaard, T., & Stein, W. D. (1997). Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity. Biochimica et Biophysica Acta, 1361, 169–176.

    PubMed  CAS  Google Scholar 

  23. Litman, T., Zeuthen, T., Skovsgaard, T., & Stein, W. D. (1997). Structure–activity relationships of P-glycoprotein interacting drugs: Kinetic characterization of their effects on ATPase activity. Biochimica et Biophysica Acta, 1361, 159–168.

    PubMed  CAS  Google Scholar 

  24. Loetchutinat, C., Heywang, C., Priebe, W., & Garnier-Suillerot, A. (2001). The absence of stereoselective P-glycoprotein- and multidrug resistance-associated protein-mediated transport of daunorubicin. Biochemical Pharmacology, 62, 561–567.

    Article  PubMed  CAS  Google Scholar 

  25. Longley, D. B., & Johnston, P. G. (2005). Molecular mechanisms of drug resistance. Journal of Pathology, 205, 275–292.

    Article  PubMed  CAS  Google Scholar 

  26. Mankhetkorn, S., & Garnier-Suillerot, A. (1998). The ability of verapamil to restore intracellular accumulation of anthracyclines in multidrug resistant cells depends on the kinetics of their uptake. European Journal of Pharmacology, 343, 313–321.

    Article  PubMed  CAS  Google Scholar 

  27. Mankhetkorn, S., Dubru, F., Hesschenbrouck, J., Fiallo, M., & Garnier-Suillerot, A. (1996). Relation among the resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of doxorubicin, daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-resistant K562 cells. Molecular Pharmacology, 49, 532–539.

    PubMed  CAS  Google Scholar 

  28. Panagiotopoulou, V., Richardson, G., Jensen, O. E., & Rauch, C. (2010). On a biophysical and mathematical model of Pgp-mediated multidrug resistance: Understanding the “space-time” dimension of MDR. European Biophysics Journal with Biophysics Letters, 39, 201–211.

    Article  PubMed  Google Scholar 

  29. Rauch, C. (2009). On the relationship between drug’s size, cell membrane mechanical properties and high levels of multi drug resistance: A comparison to published data. European Biophysics Journal, 38, 537–546.

    Article  PubMed  CAS  Google Scholar 

  30. Rauch, C. (2009). Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: A comparison to published data. European Biophysics Journal, 38, 829–846.

    Article  PubMed  CAS  Google Scholar 

  31. Rauch, C., & Pluen, A. (2007). Multidrug resistance-dependent “vacuum cleaner” functionality potentially driven by the interactions between endocytosis, drug size and Pgp-like transporters surface density. European Biophysics Journal, 36, 121–131.

    Article  PubMed  CAS  Google Scholar 

  32. Roepe, P. D. (1992). Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrug-resistant cells expressing different levels of P-glycoprotein. Biochemistry, 31, 12555–12564.

    Article  PubMed  CAS  Google Scholar 

  33. Roepe, P. D. (2000). What is the precise role of human MDR 1 protein in chemotherapeutic drug resistance? Current Pharmaceutical Design, 6, 241–260.

    Article  PubMed  CAS  Google Scholar 

  34. Roepe, P. D. (2001). pH and multidrug resistance. Novartis Foundation Symposium, 240, 232–47; discussion 247–250, 265–268.

    Google Scholar 

  35. Rudnick, J., & Gaspari, G. (2004). Elements of random walk, 2004 edn. Cambridge, MA: Cambridge University Press.

  36. Sauna, Z. E., & Ambudkar, S. V. (2007). About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Molecular Cancer Therapeutics, 6, 13–23.

    Article  PubMed  CAS  Google Scholar 

  37. Schott, B., & Robert, J. (1989). Comparative activity of anthracycline 13-dihydrometabolites against rat glioblastoma cells in culture. Biochemical Pharmacology, 38, 4069–4074.

    Article  PubMed  CAS  Google Scholar 

  38. Seelig, A. (2007). The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. Journal of Molecular Neuroscience, 33, 32–41.

    Article  PubMed  CAS  Google Scholar 

  39. Seelig, A., & Landwojtowicz, E. (2000). Structure–activity relationship of P-glycoprotein substrates and modifiers. The European Journal of Pharmaceutical Sciences, 12, 31–40.

    Article  CAS  Google Scholar 

  40. Simon, S. M., & Schindler, M. (1994). Cell biological mechanisms of multidrug resistance in tumors. Proceedings of the National Academy of Sciences of USA, 91, 3497–3504.

    Article  CAS  Google Scholar 

  41. Skovsgaard, T. (1980). Circumvention of resistance to daunorubicin by N-acetyldaunorubicin in Ehrlich ascites tumor. Cancer Research, 40, 1077–1083.

    PubMed  CAS  Google Scholar 

  42. Stock, C., Cardone, R. A., Busco, G., Krahling, H., Schwab, A., & Reshkin, S. J. (2008). Protons extruded by NHE1: Digestive or glue? European Journal of Cell Biology, 87, 591–599.

    Article  PubMed  CAS  Google Scholar 

  43. Wadkins, R. M., & Roepe, P. D. (1997). Biophysical aspects of P-glycoprotein-mediated multidrug resistance. International Review of Cytology, 171, 121–165.

    Article  PubMed  CAS  Google Scholar 

  44. Yin, L., Castagnino, P., & Assoian, R. K. (2008). ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition. Cancer Research, 68, 800–807.

    Article  PubMed  CAS  Google Scholar 

  45. Zamora, J. M., Pearce, H. L., & Beck, W. T. (1988). Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Molecular Pharmacology, 33, 454–462.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the University of Nottingham (NRF4305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Rauch.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, C. The “Multi” of Drug Resistance Explained by Oscillating Drug Transporters, Drug–Membrane Physical Interactions and Spatial Dimensionality. Cell Biochem Biophys 61, 103–113 (2011). https://doi.org/10.1007/s12013-011-9166-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9166-8

Keywords

Navigation