Skip to main content
Log in

An Improved Isolation Procedure for Adult Mouse Cardiomyocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Isolated adult mouse cardiomyocytes are an important tool in cardiovascular research, but are challenging to prepare. Because the energy supply determines cell function and viability, we compared total creatine ([Cr]) and [ATP] in isolated cardiomyocytes with the intact mouse heart. Isolated myocytes suffered severe losses of Cr (−70%) and ATP (−53%). Myocytes were not able to replete [Cr] during a 5 h incubation period in medium supplemented with 1 mM Cr. In contrast, adding 20 mM Cr to the digestion buffers was sufficient to maintain normal [Cr]. Supplementing buffers with 5 mM of inosine (Ino) and adenosine (Ado) to prevent loss of cellular nucleosides partially protected against loss of ATP. To test whether maintaining [ATP] and [Cr] improves contractile function, myocytes were challenged by varying pacing rate from 0.5 to 10 Hz and by adding isoproterenol (Iso) at 5 and 10 Hz. All groups performed well up to 5 Hz, showing a positive cell shortening–frequency relationship; however, only 16% of myocytes isolated under standard conditions were able to sustain pacing with Iso challenge at 10 Hz. In contrast, 30–50% of the myocytes with normal Cr levels were able to contract and maintain low diastolic [Ca2+]. Cell yield also improved in Cr and the Cr/Ino/Ado-treated groups (85–90% vs. 70–75% rod shaped in untreated myocytes). These data suggest that viability and performance of isolated myocytes are improved when they are protected from the severe loss of Cr and ATP during the isolation, making them an even better research tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ellingsen, O., Davidoff, A. J., Prasad, S. K., Berger, H. J., Springhorn, J. P., Marsh, J. D., et al. (1993). Adult rat ventricular myocytes cultured in defined medium: Phenotype and electromechanical function. American Journal of Physiology, 265, H747–H754.

    PubMed  CAS  Google Scholar 

  2. O’Connell, T. D., Rodrigo, M. C., & Simpson, P. C. (2007). Isolation and culture of adult mouse cardiac myocytes. Methods in Molecular Biology, 357, 271–296.

    PubMed  Google Scholar 

  3. Wolska, B. M., & Solaro, R. J. (1996). Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. American Journal of Physiology, 271, H1250–H1255.

    PubMed  CAS  Google Scholar 

  4. Zhou, Y. Y., Wang, S. Q., Zhu, W. Z., Chruscinski, A., Kobilka, B. K., Ziman, B., et al. (2000). Culture and adenoviral infection of adult mouse cardiac myocytes: Methods for cellular genetic physiology. American Journal of Physiology Heart and Circulatory Physiology, 279, H429–H436.

    PubMed  CAS  Google Scholar 

  5. Neubauer, S., Beer, M., Landschutz, W., Sandstede, J., Seyfarth, T., Lipke, C., et al. (2000). Absolute quantification of high energy phosphate metabolites in normal, hypertrophied and failing human myocardium. Magma, 11, 73–74.

    Article  PubMed  CAS  Google Scholar 

  6. Starling, R. C., Hammer, D. F., & Altschuld, R. A. (1998). Human myocardial ATP content and in vivo contractile function. Molecular and Cellular Biochemistry, 180, 171–177.

    Article  PubMed  CAS  Google Scholar 

  7. Tian, R., & Ingwall, J. S. (1996). Energetic basis for reduced contractile reserve in isolated rat hearts. American Journal of Physiology, 270, H1207–H1216.

    PubMed  CAS  Google Scholar 

  8. Bers, D. M. (2006). Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda), 21, 380–387.

    CAS  Google Scholar 

  9. Del Monte, F., & Hajjar, R. J. (2008). Intracellular devastation in heart failure. Heart Failure Reviews, 13, 151–162.

    Article  PubMed  Google Scholar 

  10. Tian, R., Nascimben, L., Kaddurah-Daouk, R., & Ingwall, J. S. (1996). Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. Journal of Molecular and Cellular Cardiology, 28, 755–765.

    Article  PubMed  CAS  Google Scholar 

  11. Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T., O’Gorman, E., et al. (1998). Some new aspects of creatine kinase (CK): Compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors, 8, 229–234.

    Article  PubMed  CAS  Google Scholar 

  12. Lim, C. C., Apstein, C. S., Colucci, W. S., & Liao, R. (2000). Impaired cell shortening and relengthening with increased pacing frequency are intrinsic to the senescent mouse cardiomyocyte. Journal of Molecular and Cellular Cardiology, 32, 2075–2082.

    Article  PubMed  CAS  Google Scholar 

  13. Kammermeier, H. (1973). Microassay of free and total creatine from tissue extracts by combination of chromatographic and fluorometric methods. Analytical Biochemistry, 56, 341–345.

    Article  PubMed  CAS  Google Scholar 

  14. Rosalki, S. B. (1967). An improved procedure for serum creatine phosphokinase determination. Journal of Laboratory and Clinical Medicine, 69, 696–705.

    PubMed  CAS  Google Scholar 

  15. Srere, P. A. (1975). The enzymology of the formation and breakdown of citrate. Advances in Enzymology and Related Areas of Molecular Biology, 43, 57–101.

    PubMed  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  17. Zhu, M., Gach, A. A., Liu, G., Xu, X., Lim, C. C., Zhang, J. X., et al. (2008). Enhanced calcium cycling and contractile function in transgenic hearts expressing constitutively active G alpha o* protein. American Journal of Physiology Heart and Circulatory Physiology, 294, H1335–H1347.

    Article  PubMed  CAS  Google Scholar 

  18. Ingwall, J. S. (2002). ATP and the heart. Norwell: Kluwer Academic Publisher.

    Book  Google Scholar 

  19. Gupta A., Chacko, V. P., & Weiss, R. G. (2009). Abnormal energetics and ATP depletion in pressure-overload mouse hearts: In vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. American Journal of Physiology Heart and Circulatory Physiology, 297, H59–H64.

    Google Scholar 

  20. Chacko, V. P., Aresta, F., Chacko, S. M., & Weiss, R. G. (2000). MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. American Journal of Physiology Heart and Circulatory Physiology, 279, H2218–H2224.

    PubMed  CAS  Google Scholar 

  21. ten Hove, M., Makinen, K., Sebag-Montefiore, L., Hunyor, I., Fischer, A., Wallis, J., et al. (2008). Creatine uptake in mouse hearts with genetically altered creatine levels. Journal of Molecular and Cellular Cardiology, 45, 453–459.

    Article  PubMed  CAS  Google Scholar 

  22. Saupe, K. W., Spindler, M., Tian, R., & Ingwall, J. S. (1998). Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circulation Research, 82, 898–907.

    PubMed  CAS  Google Scholar 

  23. Saupe, K. W., Spindler, M., Hopkins, J. C., Shen, W., & Ingwall, J. S. (2000). Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart. Journal of Biological Chemistry, 275, 19742–19746.

    Article  PubMed  CAS  Google Scholar 

  24. Boehm, E., Chan, S., Monfared, M., Wallimann, T., Clarke, K., & Neubauer, S. (2003). Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. American Journal of Physiology Endocrinology and Metabolism, 284, E399–E406.

    PubMed  CAS  Google Scholar 

  25. Strutz-Seebohm, N., Shojaiefard, M., Christie, D., Tavare, J., Seebohm, G., & Lang, F. (2007). PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cellular Physiology and Biochemistry, 20, 729–734.

    Article  PubMed  CAS  Google Scholar 

  26. Nascimben, L., Ingwall, J. S., Pauletto, P., Friedrich, J., Gwathmey, J. K., Saks, V., et al. (1996). Creatine kinase system in failing and nonfailing human myocardium. Circulation, 94, 1894–1901.

    PubMed  CAS  Google Scholar 

  27. Dzeja, P. P. C. S., & Terzic, A. (2007). Integration of adenylate kinase, glycolytic and glycogenolytic circuits in cellular energetics. Weinheim: Wiley-VCH.

    Google Scholar 

  28. Bak, M. I., & Ingwall, J. S. (1998). Regulation of cardiac AMP-specific 5′-nucleotidase during ischemia mediates ATP resynthesis on reflow. American Journal of Physiology, 274, C992–C1001.

    PubMed  CAS  Google Scholar 

  29. Ambrosio, G., Jacobus, W. E., Mitchell, M. C., Litt, M. R., & Becker, L. C. (1989). Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts. American Journal of Physiology, 256, H560–H566.

    PubMed  CAS  Google Scholar 

  30. Jennings, R. B., Sebbag, L., Schwartz, L. M., Crago, M. S., & Reimer, K. A. (2001). Metabolism of preconditioned myocardium: Effect of loss and reinstatement of cardioprotection. Journal of Molecular and Cellular Cardiology, 33, 1571–1588.

    Article  PubMed  CAS  Google Scholar 

  31. Murry, C. E., Richard, V. J., Reimer, K. A., & Jennings, R. B. (1990). Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circulation Research, 66, 913–931.

    PubMed  CAS  Google Scholar 

  32. Lewandowski, E. D., Johnston, D. L., & Roberts, R. (1991). Effects of inosine on glycolysis and contracture during myocardial ischemia. Circulation Research, 68, 578–587.

    PubMed  CAS  Google Scholar 

  33. Tiemann, K., Weyer, D., Djoufack, P. C., Ghanem, A., Lewalter, T., Dreiner, U., et al. (2003). Increasing myocardial contraction and blood pressure in C57BL/6 mice during early postnatal development. American Journal of Physiology Heart and Circulatory Physiology, 284, H464–H474.

    PubMed  CAS  Google Scholar 

  34. Pinz, I., Ostroy, S. E., Hoyer, K., Osinska, H., Robbins, J., Molkentin, J. D., et al. (2008). Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. American Journal of Physiology Heart and Circulatory Physiology, 294, H1459–H1466.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants NIH HL52320 to JSI and UM, NIH HL 075619 to JSI, NIH HL 080127 to UM, and 0930260N AHA to IP and 5 P20 RR15555-10 (subproject 6) to IP from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka Pinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinz, I., Zhu, M., Mende, U. et al. An Improved Isolation Procedure for Adult Mouse Cardiomyocytes. Cell Biochem Biophys 61, 93–101 (2011). https://doi.org/10.1007/s12013-011-9165-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9165-9

Keywords

Navigation