Skip to main content

Advertisement

Log in

Impairment of Erythrocytes Incubated in Glucose Medium: A Wavelet-Information Theory Analysis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study investigates the effects produced by an increased concentration of glucose in a suspending medium on the erythrocytes Information Theory quantifiers. Erythrocytes, which were obtained from eight healthy volunteers, were washed and incubated in vitro with glucose solutions at different concentrations. The measured Wavelet-based Information Theory quantifiers include the Relative Wavelet Energy (RWE), the Normalized Total Wavelet Shannon Entropy (NTWS), MPR-Statistical Complexity Measure (SCM) and entropy–complexity plane. The results show that the increase in glucose concentration does not produce significant changes on the RWE, while significant ones on the NTSE, which combined with SCM values allow to identify different behaviour for all the different populations in the entropy–complexity plane. Modification in the hemorheological properties of cells could be clearly detected with these Wavelet-based Information Theory quantifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown, C., Ghali, H., Zhao, Z., Thomas, L., & Friedman, E. (2005). Association of reduced red blood cell deformability with diabetic nephropathy. Kidney International, 67, 295–300.

    Article  PubMed  Google Scholar 

  2. McMillan, D. E., Utterback, N. G., & La Puma, J. (1978). Reduced erythrocytes deformability in diabetes. Diabetes, 27, 895.

    PubMed  CAS  Google Scholar 

  3. McMillan, D. E., Utterback, N. G., & Mitchell, T. P. (1983). Doublet formation of diabetic erythrocytes as a model of impaired membrane viscous deformation. Microvascular Research, 26, 205.

    Article  PubMed  CAS  Google Scholar 

  4. Szelachowska, M., Schaefer, W., Gries, A. F., & Kinalska, I. (1992). Activity of Ca/Mg ATPase in erythrocyte membrane of women with diabetes mellitus type I. Endocrynology Pology, 43, 23–29.

    CAS  Google Scholar 

  5. Korol, A. M., Valverde, J. R., & Rasia, R. J. (2002). Viscoelasticity: Fractal parameters studied on mammalian erythrocytes under shear stress. Experimental Mechanics, 42, 172–177.

    Article  Google Scholar 

  6. Korol, A. M., & Rasia, R. J. (2003). Signatures of deterministic chaos in dyslipidemic erythrocytes under shear stress. Chaos, 13, 87–93.

    Article  PubMed  CAS  Google Scholar 

  7. Korol, A. M., Rasia, R. J., & Rosso, O. A. (2006). Alterations of thalassemic erythrocytes detected by wavelet entropy. Physica A, 375, 257–264.

    Article  Google Scholar 

  8. Korol, A. M., Foresto, P., & Rosso, O. A. (2007). Self-organizing dynamics of human erythrocytes under shear stress. Physica A, 386, 770–775.

    Article  Google Scholar 

  9. Korol, A. M., Foresto, P., Darrigo, M., & Rosso, O. A. (2008). Diabetic erythrocytes test by correlation coefficient. The Open Medical Informatics Journal, 2, 105–111.

    Article  PubMed  CAS  Google Scholar 

  10. Martín, M. T., Plastino, A., & Rosso, O. A. (2003). Statistical complexity and disequilibrium. Physics Letters A, 311, 12632.

    Article  Google Scholar 

  11. Lamberti, P. W., Martín, M. T., Plastino, A., & Rosso, O. A. (2004). Intensive entropic nontriviality measure. Physica A, 334, 11931.

    Article  Google Scholar 

  12. Rosso, O. A., Larrondo, H. A., Martín, M. T., Plastino, A., & Fuentes, M. A. (2007). Distinguishing noise from chaos. Physical Review Letters, 99, 15102.

    Article  Google Scholar 

  13. Bourdon, E., Loreau, N., & Blanche, D. (1999). Glucose and free radicals impair the antioxidant properties of serum albumin. The FASEB Journal, 13, 233–244.

    PubMed  CAS  Google Scholar 

  14. Lapolla, A., Gerhardiger, C., Dal Frá, M., Franchin, A., Fedele, D., & Crepaldi, G. (1991). Glycated erythrocyte membrane proteins and hemorheological parameters in insulin dependent diabetic subjects. Clinical Hemorheology, 11(5), 405–415.

    Google Scholar 

  15. International Committee of Standarization Haemathology (Expert Panel on Blood Rheology). (1996). Guidelines for measurements of blood viscosity and erythrocyte deformability. Clinical Hemorheology and Microcirculation, 6, 439–453.

    Google Scholar 

  16. Riquelme, B., Foresto, F., DÁrrigo, M., Valverde, J., & Rasia, R. (2005). A dynamic and stationary rheological study of erythrocytes incubated in a glucose medium. Journal of Biochemical and Biophysical Methods, 62, 131–141.

    Article  PubMed  CAS  Google Scholar 

  17. Rasia, R. (1995). Quantitative evaluation of erythrocyte viscoelastic properties from diffractometric data: applications to hereditary spherocytosis and hemoglobinopathies. Clinical Hemorheology, 15, 177–189.

    Google Scholar 

  18. Riquelme, B., & Rasia, R. (1998). Complex viscoelasticity of normal and lectin treated erythrocyte using laser diffractometry. Biorheology, 35(4–5), 325–334.

    Article  PubMed  CAS  Google Scholar 

  19. Riquelme, B., Foresto, P., Valverde, J., & Rasia, R. J. (2000). Alterations to complex viscoelasticity of erythrocytes during storage. Clinical Hemorheology and Microcirculation, 22, 181–188.

    PubMed  CAS  Google Scholar 

  20. Rasia, R., Porta, P., & García Rosasco, M. (1986). Shear deformation measurement of suspended particles. Applications to erythrocytes. Review of Scientific Instruments, 57, 33–35.

    Article  Google Scholar 

  21. Riquelme, B., Valverde, J., & Rasia, R. (1999). Optical method to determine the complex viscoelasticity parameters of human red blood cells. In P. Megha Singh & R. Radhakrishnan (Eds.), Medical diagnostic techniques and procedures (pp. 249–255). New Delhi: Narosa Publishing House.

    Google Scholar 

  22. Mallat, S. (1999). A wavelet tour of signal processing. Cambridge: University Press.

    Google Scholar 

  23. Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Sch¨urmann, M., et al. (2001). Wavelet entropy: a new tool for the analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105, 6575.

    Article  Google Scholar 

  24. Rosso, O. A., Martín, M. T., Figliola, A., Keller, K., & Plastino, A. (2006). EEG analysis using wavelet-based information tools. Journal of Neuroscience Methods, 153, 16382.

    Article  Google Scholar 

  25. Martín, M. T., Plastino, A., & Rosso, O. A. (2006). Generalized statistical complexity measures: geometrical and analytical properties. Physica A, 369, 439–462.

    Article  Google Scholar 

  26. Kowalski, A. M., Martín, M. T., Plastino, A., & Rosso, O. A. (2005). Entropic non-triviality, the classical limit, and geometry-dynamics correlations. International Journal of Modern Physics B, 14, 227385.

    Google Scholar 

  27. Larrondo, H. A., Martín, M. T., Gonzalez, C. M., Plastino, A., & Rosso, O. A. (2006). Random number generators and causality. Physics Letters A, 352, 42125.

    Article  Google Scholar 

  28. Zunino, L., Perez, D. G., Martín, M. T., Plastino, A., Garavaglia, M., & Rosso, O. A. (2007). Characterization of gaussian self-similar stochastic processes using wavelet based informational tools. Physical Review E, 75, 021115.

    Article  CAS  Google Scholar 

  29. Rosso, O. A., Vicente, R., & Mirasso, C. (2008). Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: an Information Theory approach. Physics Letter A, 372, 101823.

    Article  Google Scholar 

  30. Rosso, O. A., & Masoller, C. (2009). Detecting and quantifying temporal correlations in stochastic resonances by information theory measure. The European Physical Journal B, 69, 3743.

    Article  Google Scholar 

  31. Rosso, O. A., & Masoller, C. (2009). Detecting and quantifying stochastic and coherence resonances via information theory complexity measurements. Physical Review E, 79, 040106(R).

    Article  Google Scholar 

  32. Korol, A. M., D’Arrigo, M., Foresto, P., Perez, S., Martín, M., & Rosso, O. A. (2010). Preliminary characterization of erythrocytes deformability on the entropy–complexity plane. The Open Medical Informatics Journal, 4, 164–170.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. O. A. Rosso gratefully acknowledges support from CAPES, PVE fellowship, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Korol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korol, A.M., Rosso, O.A., Martín, M.T. et al. Impairment of Erythrocytes Incubated in Glucose Medium: A Wavelet-Information Theory Analysis. Cell Biochem Biophys 60, 329–334 (2011). https://doi.org/10.1007/s12013-011-9155-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9155-y

Keywords

Navigation