Skip to main content
Log in

Mitoxantrone Induced Impediment of Histone Acetylation and Structural Flexibility of the Protein

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mitoxantrone (MTX), a choice of drug in cancer chemotherapeutic regime, is a potent and less toxic among anthracycline class of drugs. Here, we study the molecular interaction of MTX, with histone and its acetylation dynamics. Its binding with histone core protein was predicted with CD and UV–visible spectroscopic techniques. The MTX–protein complex resulted in the impediment of the histone acetyltransferase (HAT) activity in a dose dependent manner on MTX binding. Interestingly, the concentration dependent reduction in acetylated state of specific lysines K9/K14 was also observed on MTX treatment in vivo. The molecular distance r, between donor (histone H3) and acceptor (MTX) was estimated using Förster’s theory of non-radiation energy transfer and the detailed binding phenomenon was expounded. MTX binding site near N-terminal lysines is characterized with an association constant of the order of 104. The positive thermodynamic values of both ∆H° and ∆S° were suggestive that the hydrophobic interactions dominate in MTX–protein binding. The binding site allocation predicted by computational modeling placed the drug molecule near N-terminal lysine K9 and K14 of histone H3, and corroborate with the thermodynamic interaction model. The study establishes that MTX–histone interaction affects protein acetylation state and also provided a mechanistic model for its binding. Hence, MTX interaction may affect chromatin structure and implicates its role in transcriptional regulation at epigenetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myers, C. E., Mimnaugh, E. G., Yeh, G. C., & Stone, B. K. (1988). In J. W. Lown (Ed.), Anthracycline and anthracenedione-based anticancer agents (p. 527). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  2. Van Holde, K. E. (1988). Chromatin (p. 497). New York: Springer-Verlag.

    Google Scholar 

  3. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  4. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  5. Luger, K., & Richmond, T. J. (1998). The histone tails of the nucleosome. Current Opinion in Genetics and Development, 8, 140–146.

    Article  PubMed  CAS  Google Scholar 

  6. Gray, S. G., & The, B. T. (2001). Histone acetylation/deacetylation and cancer: An “open” & “shut” case? Current Molecular Medicine, 1, 401–429.

    Article  PubMed  CAS  Google Scholar 

  7. Gregory, P. D., Wagner, K., & Hörz, W. (2001). Histone acetylation and chromatin remodeling. Experimental Cell Research, 265, 195–202.

    Article  PubMed  CAS  Google Scholar 

  8. Förster, T., & Sinanoglu, O. (eds.). (1996) Modern quantum chemistry (Vol. 3, p. 93). New York: Academic Press.

  9. Schreiber, E., Matthias, P., Muller, M. M., & Schaffner, W. (1989). Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Research, 17, 6419–6421.

    Article  PubMed  CAS  Google Scholar 

  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  11. Fischle, W. (2005). In nucleo enzymatic assays for the identification and characterization of histone modifying activities. Methods, 36, 362–367.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, G., Willett, P., & Glen, V. J. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Molecular Biology, 245, 43–53.

    Article  CAS  Google Scholar 

  13. Wang, R., Lai, L., & Wang, S. J. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16, 11–26.

    Article  PubMed  CAS  Google Scholar 

  14. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). Geometric approach to macromolecule–ligand interactions. Journal of Molecular Biology, 161, 269–288.

    Article  PubMed  CAS  Google Scholar 

  15. Munishkina, L. A., Fink, A. L., & Uversky, V. N. (2004). Conformational prerequisites for formation of amyloid fibrils from histones. Journal of Molecular Biology, 342, 1305–1324.

    Article  PubMed  CAS  Google Scholar 

  16. Miles, J. L., Morey, E., Crain, F., Gross, S., San Julian, J. S., & Canady, W. J. (1962). Inhibition of alpha-chymotrypsin by diethyl ether and certain alcohols: A new type of competitive inhibition. The Journal of Biological Chemistry, 237, 1319–1322.

    PubMed  CAS  Google Scholar 

  17. Hu, Y. J., Liu, Y., Wang, J. B., Xiao, X. H., & Qu, S. S. (2004). Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 36, 915–919.

    Article  PubMed  CAS  Google Scholar 

  18. Cui, F. L., Fan, J., Li, J. P., & Hu, Z. D. (2004). Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorganic and Medicinal Chemistry, 12, 151–157.

    Article  PubMed  CAS  Google Scholar 

  19. Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161–4170.

    Article  PubMed  CAS  Google Scholar 

  20. Chen, Y., Elangovan, M., & Periasamy, A. (2005). FRET data analysis: The algorithm. In A. Periasamy & R. N. Day (Eds.), Molecular imaging: FRET microscopy and spectroscopy (p. 126). Oxford: Oxford University Press.

    Google Scholar 

  21. Luebben, W. R., Sharma. N., & Nyborg, J. K. (2010). Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14. Proceedings of the National Academy of Sciences of the United States of America, 107, 19254–19259.

    Google Scholar 

  22. Nishida, H., Suzuki, T., Kondo, S., Miura, H., Fujimura, Y., & Hayashizaki, Y. (2006). Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell. Chromosome Research, 14, 203–211.

    Article  PubMed  CAS  Google Scholar 

  23. Fuks, F. (2005). DNA methylation and histone modifications: Teaming up to silence genes. Current Opinion in Genetics and Development, 15, 490–495.

    Article  PubMed  CAS  Google Scholar 

  24. Gao, H., Lei, L., Liu, J., Qin, K., Chen, X., & Hu, Z. (2004). The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. Journal of Photochemistry and Photobiology A, 167, 213–221.

    Article  CAS  Google Scholar 

  25. Khan, S. N., Islam, B., Yennamalli, R., Sultan, A., Subbarao, N., & Khan, A. U. (2008). Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. European Journal of Pharmaceutical Sciences, 35, 371–382.

    Article  PubMed  CAS  Google Scholar 

  26. Khan, S. N., Danishuddin, M., & Khan, A. U. (2010). Inhibition of transcription factor assembly and structural stability on mitoxantrone binding with DNA. Bioscience Reports, 30, 331–340.

    Article  PubMed  CAS  Google Scholar 

  27. Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions. Forces contributing to stability. Biochemistry, 20, 3096–3102.

    Article  PubMed  CAS  Google Scholar 

  28. Khan, S. N., Islam, B., Yennamalli, R., Sultan, A., Subbarao, N., & Khan, A. U. (2008). Characterization of doxorubicin binding site and drug induced alteration in the functionally important structural state of oxyhemoglobin. Journal of Pharmaceutical and Biomedical Analysis, 48, 1096–1104.

    Article  PubMed  CAS  Google Scholar 

  29. Mahlknecht, U., & Hoelzer, D. (2000). Histone acetylation modifiers in the pathogenesis of malignant disease. Molecular Medicine, 6, 623–644.

    PubMed  CAS  Google Scholar 

  30. Khan, S. N., & Khan, A. U. (2010). Role of histone acetylation in cell physiology and diseases: An update. Clinica Chimica Acta, 411, 1401–1411.

    Article  CAS  Google Scholar 

  31. Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., et al. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703, 37–45.

    Article  CAS  Google Scholar 

  32. Kang, J., Liu, Y., Xie, M. X., Li, S., Jiang, M., & Wang, Y. D. (2004). Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochimica et Biophysica Acta, 1674, 205–214.

    PubMed  CAS  Google Scholar 

  33. Mahesha, H. G., Singh, S. A., Srinivasan, N., & Rao, A. G. (2006). A spectroscopic study of the interaction of isoflavones with human serum albumin. The FEBS Journal, 273, 451–467.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the central instrumentation facility (CIF) of IBU. This work was supported by the CSIR sanction no. 37(1209)04 EMR II. Author is also grateful to Prof Alok Bhattacharya, JNU, New Delhi for his support and critical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad U. Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Representative Coomassie gel for histone extraction from HEK293 cells (JPEG 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.N., Yennamalli, R., Subbarao, N. et al. Mitoxantrone Induced Impediment of Histone Acetylation and Structural Flexibility of the Protein. Cell Biochem Biophys 60, 209–218 (2011). https://doi.org/10.1007/s12013-010-9141-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9141-9

Keywords

Navigation