Skip to main content
Log in

Interference Microscopy in Cell Biophysics. 2. Visualization of Individual Cells and Energy-Transducing Organelles

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The coherent phase microscopy (CPM) provides a convenient and non-invasive tool for imaging cells and intracellular organelles. In this article, we consider the applications of the CPM method to imaging different cells and energy-transducing intracellular organelles (mitochondria and chloroplasts). Experimental data presented below demonstrate that the optical path length difference of the object, which is the basic optical parameter measured by the CPM method, can serve as an indicator of metabolic states of different biological objects at cellular and subcellular levels of structural organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CPM:

Coherent phase microscopy

DPM:

Dynamic phase microscopy

OPLD:

Optical path length difference

h(x):

The OPDL profile along a certain scan line

Δh :

The height of the OPDL profile

Δn :

Refractivity

ATP:

Adenosine triphosphate

CCCP:

Carbonylcyanide-3-chlorophenyl hydrazone

DCMU:

3-(3,4-dichloro-phenyl)-1,1-dimethylurea.

DBMIB:

2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone

References

  1. Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C., & Magistretti, P. (2005). Measurement of the integral refractive index and dynamic cell morphometry of living cell with digital holographic microscopy. Optics Express, 13, 9361–9373.

    Article  PubMed  Google Scholar 

  2. Curl, C., Bellair, C., Harris, T., Allman, B., Harris, P., Stewart, A., et al. (2005). Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytometry, Part A, 65A, 88–92.

    Article  Google Scholar 

  3. Lue, N., Popescu, G., Ikeda, T., Dasari, R., Badizadegan, K., & Feld, M. (2006). Live cell refractometry using microfluidic devices. Optics Letters, 31, 2759–2761.

    Article  PubMed  Google Scholar 

  4. Popescu, G., Badizadegan, K., Dasari, R. R., & Feld, M. (2006). Observation of dynamic subdomains in red blood cells. Journal of Biological Optics, 11, 040503.

    Article  Google Scholar 

  5. Ikeda, T., Popescu, G., & Dasari, R. R. (2005). Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 30, 1165–1168.

    Article  PubMed  Google Scholar 

  6. Popescu, G., Ikeda, T., Dasari, R. R., & Feld, M. (2006). Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 31, 775–777.

    Article  PubMed  Google Scholar 

  7. Tychinsky, V. P., Tavrov, A. V., Shepelsky, D. O., & Vyshenskaya, T. V. (1992). 3-D living cell imaging with high spatial and time resolutions. Proceedings of SPIE, 1647, pp. 96–99.

  8. Brehm-Stecher, B., & Johnson, E. (2004). Single-cell microbiology: Tools, technologies, and applications. Microbiology and Molecular Biology Reviews, 68, 538–559.

    Article  CAS  PubMed  Google Scholar 

  9. Jakobs, S. (2006). High resolution imaging of live mitochondria. Biochimica et Biophysica Acta, 1763, 561–573.

    CAS  PubMed  Google Scholar 

  10. Hell, S. (2004). Strategy for far-field optical imaging and writing without diffraction limit. Physics Letters A, 326, 140–145.

    Article  CAS  Google Scholar 

  11. Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  12. Donnert, G., Keller, J., Medda, R., Andrei, M.A., Rizzoli, S.O., Lührmann, R., Jahn, R., Eggeling, C., & Hell, S. W. (2006). Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the USA, 103, 11440–11445.

    Google Scholar 

  13. Huang, B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science Express, 319, 810–813.

    CAS  Google Scholar 

  14. Naito, Y., Toh-e, A., & Hamaguchi, H. (2005). In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell. Journal of Raman Spectroscopy, 36, 837–839.

    Article  CAS  Google Scholar 

  15. Cheng, J.-X., Jia, Y. K., Zheng, G., & Xie, X. S. (2002). Laser-scanning anti-Stokes Raman scattering microscopy and application to cell biology. Biophyical Journal, 83, 502–509.

    Article  CAS  Google Scholar 

  16. Wang, Y., Hahn, K. M., Murphy, R. F., & Horwitz, A. F. (2006). From imaging to understanding: Frontiers in live cell imaging. The Journal of Cell Biology, 174, 481–484.

    Article  CAS  PubMed  Google Scholar 

  17. Tychinsky, V. P. (2007). Dynamic phase microscopy: Is a “dialog” with the cell possible? Physics-Uspekhi, 50, 513–528.

    Article  Google Scholar 

  18. Tychinsky, V. P., Weiss, D., Vyshenskaja, T. V., Yagushinsky, L. S., & Nikandrov, S. L. (2000). Cooperative processes in mitochondria: Observations by dynamic phase microscopy. Biophysics, 45, 844–851.

    Google Scholar 

  19. Tychinsky, V. P. (2001). Coherent phase microscopy of intracellular processes. Physics-Uspekhi, 44, 617–629.

    Article  Google Scholar 

  20. Maksimov, G. V., Nikandrov, S. L., Lazareva, E. S., & Tychinsky, V. P. (2002). Dynamic phase-contrast microscopy study of the characteristic frequencies of fluctuations in the phase height of myelinated nerve fiber regions at rest and under stimulation. Biophysics, 47, 330–335.

    Google Scholar 

  21. Tychinsky, V., Kretushev, A., & Vyshenskaja, T. (2004). Mitochondria optical parameters are dependent on their energy state: A new electrooptical effect? European Biophysical Journal, 33, 700–705.

    Article  CAS  Google Scholar 

  22. Tychinsky, V. P., Kretushev, A. V., Vyshenskaya, T. V., & Tikhonov, A. N. (2004). A dynamic phase microscopy study of optical characteristics of individual chloroplasts. Biochimica et Biophysica Acta, 1665, 57–64.

    Article  CAS  PubMed  Google Scholar 

  23. Tychinsky, V. P., Kretushev, A. V., Vyshenskaya, T. V., & Tikhonov, A. N. (2005). Coherent phase microscopy in cell biology: Visualization of metabolic states. Biochimica et Biophysica Acta, 1708, 362–366.

    Article  CAS  PubMed  Google Scholar 

  24. Tychinsky, V. P., Kretushev, A. V., Klemyashov, I. V., Vyshenskaya, T. V., Shtil, A. A., & Zatsepina, O. V. (2005). Coherent phase microscopy, a novel approach to study the physiological state of the nucleolus. Doklady Biochemistry and Biophysics, 405, 432–436.

    Article  CAS  PubMed  Google Scholar 

  25. Tychinsky, V. P., Nikolaev, Yu. A., Lisovskii, V. V., Kretushev, A. V., Vyshenskaja, T. V., Suzina, N. E., et al. (2007). Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations. Advances in Space Research, 40, 1678–1685.

    Article  Google Scholar 

  26. Yaguzhinsky, L. S., Vyshenskaya, T. V., Kretushev, A. V., & Tychinsky, V. P. (2008). Identification of two discrete states of energized mitochondria: Experiments on single mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2, 144–149.

    Article  Google Scholar 

  27. Hueser, J., & Blatter, L. (1999). Fluctuations of mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochemical Journal, 343, 311–317.

    Article  Google Scholar 

  28. Hattori, T., Watanabe, K., Uechi, Y., Yoshioka, H., & Ohta, Y. (2005). Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping. Biophysical Journal, 88, 2340–2349.

    Article  CAS  PubMed  Google Scholar 

  29. Scaduto, R., & Grotyohann, L. (1999). Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical Journal, 76, 469–477.

    Article  CAS  PubMed  Google Scholar 

  30. Tychinsky, V. P., Masalov, I. N., Pankov, V. L., & Ublinsky, D. V. (1989). Computerized phase microscope for investigation of submicron structures. Optics Communications, 74, 37–40.

    Article  Google Scholar 

  31. Tychinsky, V. P. (1989). On superresolution of phase objects. Optics Communications, 74, 41–45.

    Article  Google Scholar 

  32. Tychinsky, V. P. (1991). Wavefront dislocations and registering images inside the Airy disk. Optics Communications, 80, 1–7.

    Google Scholar 

  33. Tychinsky, V., & Velzel, Ch. F. (1994). Super-resolution in optics. In Y. C. Dainty (Ed.), Current trends in optics. London: Academic Press.

    Google Scholar 

  34. Tychinsky, V. P., Kufal, G. E., Vyshenskaja, T. V., Perevedentseva, E. V., & Nikandrov, S. L. (1997). Measurement of submicron structures with the “Airyscan” laser phase microscope. Quantum Electronics, 27, 735–739.

    Article  Google Scholar 

  35. Kretushev, A. V., & Tychinsky, V. P. (2002). Super-resolution at the singularities of phase images. Quantum Electronics, 32, 66–70.

    Article  CAS  Google Scholar 

  36. Tychinsky, V. P., & Tikhonov, A. N. (2010). Interference microscopy in cell biophysics. 1. Principles and methodological aspects of coherent phase microscopy. Cell Biochemistry and Biophysics. 10.1007/s12013-010-9114-z.

  37. Paleev, N. R., Slinchenko, V. A., Vasilenko, I. A., Konradov, A. A., & Tychinsky, V. P. (1996). Influence of He–Ne Laser blood irradiation on morphofunctional state of monocites in astmatic patients. Proceedings of SPIE, 2630, 142–146.

    Google Scholar 

  38. Tychinsky, V. P., Kaverin, N. V., Vyshenskaja, T. V., Perevedentseva, E. V., Kufal, G. E., & Nikandrov, S. L. (1997). Studies of Influenza Virus Interaction with MDCK-Cells using Computer-aided Phase Microscope “Airyscan”. Proceedings of SPIE, 2984, 199–205.

  39. Skulachev, V. P. (1988). Membrane bioenergetics. Berlin: Springer-Verlag.

    Google Scholar 

  40. Nickolls, D. G., & Ferguson, S. J. (2002). Bioenergetics 3. New York: Academic Press, Inc.

    Google Scholar 

  41. Blankenship, R. E. (2002). Molecular mechanisms of photosynthesis. Oxford: Blackwell Science.

    Book  Google Scholar 

  42. Abrahams, J. P., Leslie, A. G. W., Lutter, R., & Walker, J. E. (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature, 370, 621–628.

    Article  CAS  PubMed  Google Scholar 

  43. Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauß, N., Saenger, W., et al. (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature, 409, 739–743.

    Article  CAS  PubMed  Google Scholar 

  44. Jordan, P., Fromme, P., Witt, H.-T., Klukas, O., Saenger, W., & Krauß, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  45. Kurisi, G., Zhang, H., Smith, J. L., & Cramer, W. A. (2003). Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: Tuning the cavity. Science, 302, 1009–1014.

    Article  Google Scholar 

  46. Noctor, G., & Foyer, C. H. (2000). Homeostasis of adenylate status during photosynthesis in a fluctuating environment. Journal of Experimental Botany, 51, 347–356.

    Article  CAS  PubMed  Google Scholar 

  47. Allen, J. (2003). Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain. Trends Plant Science, 8, 15–19.

    Article  CAS  Google Scholar 

  48. Pfannschmidt, T. (2003). Chloroplast redox signals: How photosynthesis controls its own genes. Trends in Plant Science, 8, 33–41.

    Article  CAS  PubMed  Google Scholar 

  49. Trubitsin, B. V., & Tikhonov, A. N. (2003). Determination of a transmembrane pH difference in chloroplasts with a spin label Tempamine. Journal of Magnetic Resonance, 163, 257–269.

    Article  CAS  PubMed  Google Scholar 

  50. Rumberg, B., & Siggel, U. (1969). pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften, 56, 130–132.

    Article  CAS  PubMed  Google Scholar 

  51. Tikhonov, A. N., Khomutov, G. B., Ruuge, E. K., & Blumenfeld, L. A. (1981). Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochimica et Biophysica Acta, 637, 321–333.

    Article  CAS  Google Scholar 

  52. Blumenfeld, L. A., & Tikhonov, A. N. (1994). Biophysical thermodynamics of intracellular processes: Molecular machines of the living cell. New York: Springer.

  53. Kramer, D. M., Sacksteder, C. A., & Cruz, J. A. (1999). How acidic is the lumen? Photosynthesis Research, 60, 151–163.

    Article  CAS  Google Scholar 

  54. Kramer, D. M., Sacksteder, C. A., & Cruz, J. A. (2003). Balancing the central roles of the thylakoid proton gradient. Trends in Plant Science, 8, 27–32.

    Article  CAS  PubMed  Google Scholar 

  55. Tikhonov, A. N., Agafonov, R. V., Grigor’ev, I. A., Kirilyuk, I. A., Ptushenko, V. V., & Trubitsin, B. V. (2008). Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochimica et Biophysica Acta, 1777, 285–294.

    Article  CAS  PubMed  Google Scholar 

  56. Petrov, D. (2007). Raman spectroscopy of optically trapped living cell. Journal of Optics and Pure Applied Optics, 9, 139–156.

    Article  Google Scholar 

  57. Tychinsky, V. P., Golubev, S. S., Vyshenskaya, T. V., Kretushev, A. V., & Yaguzhinsky, L. S. (2005). Electro-optical effect in multi-layer phospholipids membranes. Biomembranes (Moscow), 22, 131–136.

    CAS  Google Scholar 

  58. Cheng, J.-X., Pautot, S., Weitz, D., & Xie, X. S. (2003). Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the USA, 100, 9826–9830.

    Google Scholar 

  59. Kim, J., Kim, G., & Cremer, P. (2001). Investigation of water structure at the solid/liquid interface. Langmuir, 17, 7255–7260.

    Article  CAS  Google Scholar 

  60. Wiggins, P. M. (2001). High and low density intracellular water. Cellular and Molecular Biology, 47, 735–744.

    CAS  PubMed  Google Scholar 

  61. Chaplin, M. (2010). Water structure and science. www.lsbu.ac.uk/water.

  62. Chai, B., Zhen, J., Zhao, Q., & Pollack, G. (2008). Spectroscopic studies of solutes in aqueous solution. Journal of Physical Chemistry, 112, 2242–2247.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors consider their pleasant duty to express a lot of thanks to the MIREA Laboratory staff and to list our collaborators, A.V. Kretushev and T.V. Vyshenskaja, who made a principal contribution to CPM measurements reviewed above. Fruitful discussions and cooperation were with A.A. Shtil, L.S. Yaguzhinsky, O.V. Zatsepina and G.I. El’Registan. We thank the anonymous referees for critical reading of the manuscript. This work was partly supported by grants 06-04-48620 and 09-04-00978 from the Russian Foundation for Basic Researches.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir P. Tychinsky or Alexander N. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tychinsky, V.P., Tikhonov, A.N. Interference Microscopy in Cell Biophysics. 2. Visualization of Individual Cells and Energy-Transducing Organelles. Cell Biochem Biophys 58, 117–128 (2010). https://doi.org/10.1007/s12013-010-9115-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9115-y

Keywords

Navigation