Skip to main content

Advertisement

Log in

Interference Microscopy in Cell Biophysics. 1. Principles and Methodological Aspects of Coherent Phase Microscopy

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The purpose of our tandem publications is to review the applications of the coherent phase microscopy to cell biophysics. In this article, we briefly consider the fundamentals and methodological aspects of the coherent phase microscopy (CPM). One of important advantages of this method is a high sensitivity of CPM images to changes in physical–chemical properties of biological samples. The optical path length difference (OPLD), measured with CPM instruments in different domains of an object, serves as the informative optical parameter used for visualization of individual cells or intracellular organelles. Metabolically dependent variations of CPM images reflect changes in the functional state of biological objects. In the next article, we review results of CPM studies of different cells and intracellular energy-transducing organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CPM:

Coherent phase microscopy or coherent phase microscope

DPM:

Dynamic phase microscopy

OPLD:

Optical path length difference

h(x,y):

2D distribution of the OPDL values in the image plane (x,y)

h(x):

The OPDL profile along a scan-line

Δh :

The height of the OPDL profile

Δn :

Refractivity

References

  1. Wang, Y.-L., Hahn, K. M., Murphy, R. F., & Horwitz, A. F. (2006). From imaging to understanding: Frontiers in live cell imaging. Journal of Cell Biology, 174, 481–484.

    Article  CAS  PubMed  Google Scholar 

  2. Betzig, E. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  3. Hell, S. W. (2008). Far-field optical nanoscopy. Proceedings of the National Academy of Sciences of the USA, 105, 14271–14276.

  4. Huang, B., Wang, W. Q., Bates, M., & Zhuang, X. W. (2008). Three-dimensional super-resolution imaging be stochastic optical reconstruction microscopy. Science, 319, 810–813.

    Article  CAS  PubMed  Google Scholar 

  5. Vasiri, A., Tang, J., Shroff, H., & Shank, C. V. (2008). Multilayer 3-dimensional super resolution imaging of thick biological samples. Proceedings of the National Academy of Sciences of the USA, 105, 20221–20226.

    Article  Google Scholar 

  6. Donnert, G., Keller, J., Medda, R., Andrei, M. A., Rizzoli, S. O., Lührmann, R., et al. (2006). Macromolecular-scale resolution in biological fluorescence microscopy. Proceedings of the National Academy of Sciences of the USA, 103, 1440–11445.

    Article  Google Scholar 

  7. Wu, D., Lui, Z., & Zhang, X. (2008). Super-resolution imaging by random adsorbed molecule probes. Nanoletters, 8, 1159–1162.

    CAS  Google Scholar 

  8. Schermelleh, L., Carlton, P., Haase, S., Shao, L., Winoto, L., Kner, P., et al. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332–1336.

    Article  CAS  PubMed  Google Scholar 

  9. Shtengel, G., Galbraith, J., Lippincott-Schwartz, J., Gillette, J., Manley, S., Sougrat, R., et al. (2009). Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proceedings of the National Academy of Sciences of the USA, 106, 3110–3125.

    Article  Google Scholar 

  10. Popescu, G. (2008). Quantitative phase imaging of nanoscale cell structure and dynamics. In P. J. Bhanu (Ed.), Methods in cell biology (Vol. 90, Chap. 5). New York: Elsevier Inc.

  11. Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C., & Magistretti, P. (2005). Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Optics Express, 13, 9361–9373.

    Article  PubMed  Google Scholar 

  12. Tychinsky, V. P. (2007). Dynamic phase microscopy: Is a “dialog” with the cell possible? Physics–Uspekh, 50, 513–528.

    Google Scholar 

  13. Vyshnyakov, G., Levin, G., Minaev, V., Pickalov, V., & Likharev, A. (2004). Tomographic interference microscopy of living cells. European Journal of Microscopy and Analysis, 87, 19–21.

    Google Scholar 

  14. Park, Y.-K., Diez-Silva, M., Popescu, G., Lykotrafitis, G., Choi, W., & Feld, M. (2008). Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proceedings of the National Academy of Sciences of the USA, 105, 13730–13735.

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi, T., Iwai, H., Miwa, M., & Yamashita, Y. (2008). Low-coherent quantitative phase microscope for nanometer-scale measurements of living cells morphology. Optics Express, 16, 12227–12238.

    Article  PubMed  Google Scholar 

  16. Charriere, F., Pavillon, N., Colomb, T., Depeursinge, C., Heger, T., Mitchel, E., et al. (2006). Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba. Optics Express, 14, 7005–7013.

    Article  PubMed  Google Scholar 

  17. Popescu, G., Ikeda, T., Best, C. A., Badizadegan, K., Dasari, R. R., & Feld, M. S. (2005). Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. Journal of Biomedical Optics, 10, 060503.

    Article  PubMed  Google Scholar 

  18. Ikeda, T., Popescu, G., & Dasari, R. R. (2005). Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 30, 1165–1168.

    Article  PubMed  Google Scholar 

  19. Popescu, G., Ikeda, T., Dasari, R. R., & Feld, M. (2006). Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 31, 775–777.

    Article  PubMed  Google Scholar 

  20. Born, M., & Wolf, E. (1964). Principles of optics. Oxford: Pergamon Press.

    Google Scholar 

  21. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., & Reid, R. C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.

    Article  CAS  PubMed  Google Scholar 

  22. Bhushan, B., Wyant, J. C., & Koliopoulos, C. L. (1985). Measurements of surface-topography of magnetic tapes by Mirau interferometry. Applied Optics, 24, 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  23. Srinivasan, V., Liu, H. C., & Halioua, M. (1985). Automated phase-measuring profilometry: A phase mapping approach. Applied Optics, 34, 185–188.

    Article  Google Scholar 

  24. Hariharan, P. (1987). Digital phase stepping interferometry: Effects of multiply reflected beams. Applied Optics, 26, 2506–2507.

    Article  CAS  PubMed  Google Scholar 

  25. Creath, K. (1988). Phase measurement interferometry techniques. In: E. Wolf (Ed.), Progress in optics (Vol. XXVI, pp. 349–393). Amsterdam: Elsevier Science Publishers B.V.

  26. Wyant, J. C., & Creath, K. (1985). Recent advances in interferometric optical testing. Laser Focus, 11, 118–120.

    Google Scholar 

  27. Tychinsky, V. P., Masalov, I. N., Pankov, V. L., & Ublinsky, D. V. (1989). Computerized phase microscope for investigation of submicron structures. Optics Communications, 74, 37–40.

    Article  Google Scholar 

  28. Tychinsky, V. P. (1989). On super-resolution of phase objects. Optics Communications, 74, 41–45.

    Article  Google Scholar 

  29. Tychinsky, V. P. (1991). Wavefront dislocations and registering images inside the Airy disk. Optics Communications, 80, 1–7.

    Google Scholar 

  30. Tychinsky, V. P., Tavrov, A. V., Shepelsky, D. O., & Shuchkin, A. G. (1992). The experimental evidence of the phase object super-resolution. Pisma v GTPh, 17, 80–83.

    Google Scholar 

  31. Tychinsky, V. P., Kufal, G. E., Vyshenskaya, T. V., Perevedentseva, E. V., & Nikandrov, S. L. (1997). Measurement of submicron structures with the Airyscan laser phase microscope. Quantum Electronics, 27, 735–739.

    Article  Google Scholar 

  32. Tychinsky, V. P. & Velzel, C. H. F. (1994) Super-resolution in microscopy. In J. C. Dainty (Ed.), Current trends in optics (pp. 255–268). London: Academic press.

  33. Kretushev, A. V., & Tychinsky, V. P. (2002). Super-resolution at the singularities of phase images. Quantum Electronics, 32, 66–70.

    Article  CAS  Google Scholar 

  34. Tychinsky, V. P. (2008). Super-resolution and singularities in phase images. Physics–Uspekhi, 51, 1205–1214.

    Google Scholar 

  35. Curl, C., Bellair, C., Yarris, T., Allman, B., Harris, P., Stewart, A., et al. (2005). Refractive index measurements in viable cells using phase-amplitude microscopy and confocal microscopy. Cytometry Part A, 65A, 88–92.

    Article  Google Scholar 

  36. Laporta, A. & Kleinfeld, D. (2005). Interferometric detection of action potentials in vitro, In R. Yuste & A. Konnerth (Eds.), Imaging in neuroscience and development: A laboratory manual (pp. 539–543). New York: Cold Spring Harbor Laboratory Press.

  37. Tychinsky, V. P. & Tikhonov, A. N. (in press). Interference microscopy in cell biophysics. 2. Visualization of individual cells and energy-transducing organelles. Cell Biochemistry and Biophysics.

  38. Tychinsky, V., Kretushev, A., & Vyshenskaja, T. (2004). Mitochondria optical parameters are dependent on their energy state: A new electrooptical effect? European Biophysical Journal, 33, 700–705.

    Article  CAS  Google Scholar 

  39. Tychinsky, V. P., Kretushev, A. V., Vyshenskaya, T. V., & Tikhonov, A. N. (2004). A dynamic phase microscopy study of optical characteristics of individual chloroplasts. Biochimica et Biophysica Acta, 1665, 54–57.

    Article  Google Scholar 

  40. Tychinsky, V. P., Kretushev, A. V., Vyshenskaya, T. V., & Tikhonov, A. N. (2005). Coherent phase microscopy in cell biology: Visualization of metabolic states. Biochimica et Biophysica Acta, 1708, 362–366.

    Article  CAS  PubMed  Google Scholar 

  41. Popescu, G., Park, Y., Choi, W., Dasari, R., Feld, M., & Badizadegan, K. (2008). Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Molecules and Diseases, 41, 10–16.

    Article  CAS  Google Scholar 

  42. Lue, N., Choi, W., Badizadegan, K., Dasari, R., Feld, M., & Popescu, G. (2008). Confocal diffraction phase microscopy of live cells. Optical Letters, 33, 2074–2076.

    Article  Google Scholar 

  43. Choi, W., Fang-yen, C., Oh, S., Dasari, R., & Feld, M. S. (2008). Tomographic phase microscopy. Imaging & Microscopy, 1, 48–50.

    Article  Google Scholar 

  44. Vishnyakov, G. N. & Levin G. G. (1998). Optical tomography of living cells using phase-shifting Linnik microscope. Proceedings of SPIE, 3568, 197–200.

  45. Gu, J. J., Yu, Y. F., Li, E. P., Ng, S. H., Yap, P. H., Zhou, X. Q., Cheng, T. H., & Liu A. Q. (2008). Real-time measurement of cellular refractive index and thickness using cell culture chip. In 12 th International Conference on miniaturized systems for chemistry and life science, Oct 12–16, San Diego, USA.

  46. Lue, N., Popescu, G., Ikeda, T., Dasari, R., Badizadegan, K., & Feld, M. (2006). Live cell refractometry using microfluidic devices. Optics Letters, 31, 2759–2761.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their deep gratitude to I. Mazalov, D. Ublinsky, and S. Klushin who actively participated in the development of CPM “Airyscan”. We also thank A. Tavrov, G. Kufal, E. Perevedentseva, T. Vyshenskaya. A. Kretushev, and I. Klemjashov for their active participation in experiments on CPM imaging of biological objects. It is our debt of gratitude to say that A. Kretushev has made a basic contribution to the software development and the improvement of the instrument characteristics. We are also grateful to Dr. A.A. Shtil and Prof. L.S. Yagudzinsky for fruitful cooperation. We thank the anonymous referees for critical reading of the manuscript. The study was partly supported by the Russian Foundation for Basic Researches (grants 07-04-00473, 09-04-00978).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir P. Tychinsky or Alexander N. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tychinsky, V.P., Tikhonov, A.N. Interference Microscopy in Cell Biophysics. 1. Principles and Methodological Aspects of Coherent Phase Microscopy. Cell Biochem Biophys 58, 107–116 (2010). https://doi.org/10.1007/s12013-010-9114-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9114-z

Keywords

Navigation