Abstract
Menadione (MD) is an effective cytotoxic drug able to produce intracellularly large amounts of superoxide anion. Quercetin (QC), a widely distributed bioflavonoid, can exert both antioxidant and pro-oxidant effects and is known to specifically inhibit cell proliferation and induce apoptosis in different cancer cell types. We have investigated the relation between delayed luminescence (DL) induced by UV-laser excitation and the effects of MD, hydrogen peroxide, and QC on apoptosis and cell cycle in human leukemia Jurkat T-cells. Treatments with 500 μM H2O2 and 250 μM MD for 20 min produced 66.0 ± 4.9 and 46.4 ± 8.6% apoptotic cell fractions, respectively. Long-term (24 h) pre-exposure to 5 μM, but not 0.5 μM QC enhanced apoptosis induced by MD, whereas short-term (1 h) pre-incubation with 10 μM QC offered 50% protection against H2O2-induced apoptosis, but potentiated apoptosis induced by MD. Since physiological levels of QC in the blood are normally less than 10 μM, these data can provide relevant information regarding the benefits of flavonoid-combined treatments of leukemia. All the three drugs exerted significant effects on DL. Our data are consistent with (1) the involvement of Complex I of the mitochondrial respiratory chain as an important source of delayed light emission on the 10 μs–10 ms scale, (2) the ability of superoxide anions to quench DL on the 100 μs–10 ms scale, probably via inhibition of reverse electron transfer at the Fe/S centers in Complex I, and (3) the relative insensitivity of DL to intracellular OH• and H2O2 levels.
This is a preview of subscription content, access via your institution.



References
Laux, I., & Nel, A. (2001). Evidence that oxidative stress-induced apoptosis by menadione involves Fas-dependent and Fas-independent pathways. Clinical Immunology, 101, 335–344.
Matzno, S., Yamaguchi, Y., Akiyoshi, T., Nakabayashi, T., & Matsuyama, K. (2008). An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biological and Pharmaceutical Bulletin, 31, 1270–1273.
Brière, J. J., Schlemmer, D., Chretien, D., & Rustin, P. (2004). Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochemical and Biophysical Research Communications, 316, 1138–1142.
Criddle, D. N., Gerasimenko, J. V., Baumgartner, H. K., Jaffar, M., Voronina, S., Sutton, R., et al. (2007). Calcium signalling and pancreatic cell death: Apoptosis or necrosis? Cell Death and Differentiation, 14, 1285–1294.
Floreani, M., & Carpenedo, F. (1992). One- and two-electron reduction of menadione in guinea-pig and rat cardiac tissue. General Pharmacology, 23, 757–762.
Chen, D., Daniel, K. G., Chen, M. S., Kuhn, D. J., Landis-Piwowar, K. R., & Dou, Q. P. (2005). Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochemical Pharmacology, 69, 1421–1432.
De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., et al. (2000). In vitro evaluation of newly developed chalcone analogues in human cancer cells. Cancer Chemotherapy and Pharmacology, 46, 305–312.
Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., et al. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radical Research, 39, 1249–1258.
Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.
Kim, G. N., & Jang, H. D. (2009). Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences, 1171, 530–537.
Kim, B. M., Choi, Y. J., Han, Y., Yun, Y. S., & Hong, S. H. (2009). N, N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells. Toxicology and Applied Pharmacology, 239, 87–97.
Rao, Y. K., Geethangili, M., Fang, S. H., & Tzeng, Y. M. (2007). Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: A comparative study. Food and Chemical Toxicology, 45, 1770–1776.
Zhang, Q., Zhao, X. H., & Wang, Z. J. (2009). Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicology in Vitro, 23, 797–807.
Yen, G. C., Duh, P. D., Tsai, H. L., & Huang, S. L. (2003). Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, Biotechnology, and Biochemistry, 67, 1215–1222.
Fiorani, M., Guidarelli, A., Blasa, M., Azzolini, C., Candiracci, M., Piatti, E., et al. (2010). Mitochondria accumulate large amounts of quercetin: Prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. The Journal of Nutritional Biochemistry, 21, 397–404.
De Marchi, U., Biasutto, L., Garbisa, S., Toninello, A., & Zoratti, M. (2009). Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochimica et Biophysica Acta, 1787, 1425–1432.
Dorta, D. J., Pigoso, A. A., Mingatto, F. E., Rodrigues, T., Prado, I. M., Helena, A. F., et al. (2005). The interaction of flavonoids with mitochondria: Effects on energetic processes. Chemico-Biological Interactions, 152, 67–78.
Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology and Medicine, 26, 107–116.
Barbouti, A., Amorgianiotis, C., Kolettas, E., Kanavaros, P., & Galaris, D. (2007). Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radical Biology and Medicine, 43, 1377–1387.
Chien, S. Y., Wu, Y. C., Chung, J. G., Yang, J. S., Lu, H. F., Tsou, M. F., et al. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human and Experimental Toxicology, 28, 493–503.
Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Dröge, W., & Schmitz, M. L. (1999). Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene, 18, 747–757.
Foster, K. A., Galeffi, F., Gerich, F. J., Turner, D. A., & Müller, M. (2006). Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiology, 79, 136–171.
Godar, D. E. (1999). UVA1 radiation triggers two different final apoptotic pathways. Journal of Investigative Dermatology, 112, 3–12.
Long, X., Goldenthal, M. J., Wu, G. M., & Marín-García, J. (2004). Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocytes response to H2O2. Journal of Molecular and Cellular Cardiology, 37, 63–70.
Macho, A., Hirsch, T., Marzo, I., Marchetti, P., Dallaporta, B., Susin, S. A., et al. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. Journal of Immunology, 158, 4612–4619.
Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., et al. (2006). Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radical Research, 40, 619–630.
Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., & Chernyak, B. V. (2004). Inhibition of mitochondrial bioenergetics: The effects on structure of mitochondria in the cell and on apoptosis. Acta Biochimica Polonica, 51, 553–562.
Ortner, M. A., Ebert, B., Hein, E., Zumbusch, K., Nolte, D., Sukowski, U., et al. (2003). Time gated fluorescence spectroscopy in Barrett’s oesophagus. Gut., 52, 28–33.
Musumeci, F., Applegate, L. A., Privitera, G., Scordino, A., Tudisco, S., & Niggli, H. J. (2005). Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: Temperature dependence. Journal of Photochemistry and Photobiology B: Biology, 79, 93–99.
Kim, H. W., Sim, S. B., Kim, C. K., Kim, J., Choi, C., You, H., et al. (2005). Spontaneous photon emission and delayed luminescence of two types of human lung cancer tissues: Adenocarcinoma and squamous cell carcinoma. Cancer Letters, 229, 283–289.
Kemmner, W., Wan, K., Rüttinger, S., Ebert, B., Macdonald, R., Klamm, U., et al. (2008). Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB Journal, 22, 500–509.
Mik, E. G., Johannes, T., Zuurbier, C. J., Heinen, A., Houben-Weerts, J. H., Balestra, G. M., et al. (2008). In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophysical Journal, 95, 3977–3990.
Felker, P., Izawa, S., Good, N. E., & Haug, A. (1973). Effects of electron transport inhibitors on millisecond delayed light emission from chloroplasts. Biochimica et Biophysica Acta, 325, 193–196.
Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingartner, O., & Wolf, R. (1984). Biophoton emission. New evidence for coherence and DNA as source. Cell Biophysics, 6, 33–52.
Slawinski, J. (1988). Luminescence research and its relation to ultraweak cell radiation. Experientia, 44, 559–571.
Hideg, E., Kobayashi, M., & Inaba, H. (1991). Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. Biochimica et Biophysica Acta, 1098, 27–31.
Tudisco, S., Scordino, A., Privitera, G., Baran, I., & Musumeci, F. (2004). ARETUSA – Advanced research equipment for fast ultraweak luminescence analysis: New developments. Nuclear Instruments and Methods in Physics Research Section A, 518, 463–464.
Goltsev, V., Chernev, P., Zaharieva, I., Lambrev, P., & Strasser, R. J. (2005). Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. Photosynthesis Research, 84, 209–215.
Katsumata, M., Takeuchi, A., Kazumura, K., & Koike, T. (2008). New feature of delayed luminescence: Preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata. Journal of Photochemistry and Photobiology B: Biology, 90, 152–162.
Guo, Y., & Tan, J. (2009). A kinetic model structure for delayed fluorescence from plants. BioSystems, 95, 98–103.
Baran, I., Ganea, C., Ursu, I., Musumeci, F., Scordino, A., Tudisco, S., et al. (2009). Effects of nocodazole and ionizing radiation on cell proliferation and delayed luminescence. Romanian Journal of Physics, 54, 557–567.
Koczor, C. A., Shokolenko, I. N., Boyd, A. K., Balk, S. P., Wilson, G. L., & Ledoux, S. P. (2009). Mitochondrial DNA damage initiates a cell cycle arrest by a Chk2-associated mechanism in mammalian cells. The Journal of Biological Chemistry, 284, 36191–36201.
Seomun, Y., Kim, J. T., Kim, H. S., Park, J. Y., & Joo, C. K. (2005). Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells. Molecular Vision, 11, 764–774.
Khan, A. U. (1978). Activated oxygen: Singlet molecular oxygen and superoxide anion. Photochemistry and Photobiology, 28, 615–626.
Chen, Z. H., Saito, Y., Yoshida, Y., & Niki, E. (2008). Effect of oxygen concentration on free radical-induced cytotoxicity. Bioscience, Biotechnology, and Biochemistry, 72, 1491–1497.
Verkhovskaya, M. L., Belevich, N., Euro, L., Wikström, M., & Verkhovsky, M. I. (2008). Real-time electron transfer in respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 105, 3763–3767.
Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., et al. (2001). The photocycle of a flavine-binding domain of the blue light photoreceptor phototropin. The Journal of Biological Chemistry, 276, 36493–36500.
Acknowledgments
This work was partially supported by the Romanian Ministry of Education and Research under CNCSIS-UEFISCSU Grant PNII-IDEI no. 1138/2009, code 1449/2008, and CNMP Grant PNII-Partnership no. 71-073/2007.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baran, I., Ganea, C., Scordino, A. et al. Effects of Menadione, Hydrogen Peroxide, and Quercetin on Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T-Cells. Cell Biochem Biophys 58, 169–179 (2010). https://doi.org/10.1007/s12013-010-9104-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12013-010-9104-1
Keywords
- Apoptosis
- Delayed luminescence
- Oxidative stress
- Flavonoids
- Mitochondrial respiratory chain
- Leukemia