Skip to main content
Log in

Digitalis Does not Improve Left Atrial Mechanical Dysfunction After Successful Electrical Cardioversion of Chronic Atrial Fibrillation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study was designed to investigate whether administration of digitalis could improve mechanical function of left atrial appendage (LAA) and left atrium prospectively in patients with atrial stunning. Fifty-four consecutive patients in whom atrial stunning was observed immediately after cardioversion of chronic atrial fibrillation (AF) were randomized into digitalis or control group for 1 week following cardioversion. Transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) were performed prior to, immediately following, 1 day after and 1 week after cardioversion to measure transmitral flow velocity and LAA flow velocity. Electrical cardioversion of AF elicited significantly slower left atrial appendage peak emptying velocity (LAA-PEV) and peak filling velocity (LAA-PFV) immediately following cardioversion in both groups. 1 day post cardioversion, there were no significant differences in transmitral E wave, A wave, E/A ratio, LAA-PEV, LAA-PFV or left atrial appendage ejection fraction (LAA-EF) between digitalis and control groups. 1 week post cardioversion, no significant differences were found in transmitral E wave, A wave, E/A ratio, LAA-PEV, LAA-PFV or LAA-EF between the two groups. The occurrence rates of spontaneous echo contrast were not significantly different between digitalis and control groups one day and one week post cardioversion. In conclusion, digitalis did not improve left atrial and appendage mechanical dysfunction following cardioversion of chronic AF. Digitalis did not prevent the development of spontaneous echo contrast in left atrial chamber and appendage. This may be due to the fact that digitalis aggravates intracellular calcium overload induced by chronic AF and has a negative effect on ventricular rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimm, R. A., Stewart, W. J., Maloney, J. D., Cohen, G. I., Pearce, G. L., Salcedo, E. E., et al. (1993). Impact of electrical cardioversion for atrial fibrillation on left atrial appendage function and spontaneous echo contrast: characterization by simultaneous transesophageal echocardiography. Journal of the American College of Cardiology, 22, 1359–1366.

    CAS  PubMed  Google Scholar 

  2. Yang, S., Huang, C., Hu, X., Jin, L., Li, F., & Peng, S. (2003). Predictors of left atrial appendage stunning after electrical cardioversion of non-valvular atrial fibrillation. Chin Med J (Engl), 116, 1445–1450.

    Google Scholar 

  3. Black, I. W., Fatkin, D., Sagar, K. B., Khandheria, B. K., Leung, D. Y., Galloway, J. M., et al. (1994). Exclusion of atrial thrombus by transesophageal echocardiography does not preclude embolism after cardioversion of atrial fibrillation. A multicenter study. Circulation, 89, 2509–2513.

    CAS  PubMed  Google Scholar 

  4. Lévy, S., Ricard, P., Gueunoun, M., Yapo, F., Trigano, J., Mansouri, C., et al. (1997). Low-energy cardioversion of spontaneous atrial fibrillation. Immediate and long term results. Circulation, 96, 253–259.

    PubMed  Google Scholar 

  5. Khan, I. A. (2003). Atrial stunning: basics and clinical considerations. International Journal of Cardiology, 92, 113–128.

    Article  PubMed  Google Scholar 

  6. Zapolski, T., & Wysokinski, A. (2005). Stunning of the left atrium after pharmacological cardioversion of atrial fibrillation. Kardiologia Polska, 63, 254–262.

    PubMed  Google Scholar 

  7. Antonielli, E., Pizzuti, A., Bassignana, A., Tanga, M., Baralis, G., Rovere, M. E., et al. (1999). Transesophageal echocardiographic evidence of more pronounced left atrial stunning after chemical (propafenone) rather than electrical attempts at cardioversion from atrial fibrillation. American Journal of Cardiology, 84(1092–1096), A9–A10.

    Google Scholar 

  8. DeCara, J. M., Pollak, A., Dubrey, S., & Falk, R. H. (2000). Positive atrial inotropic effect of dofetilide after cardioversion of atrial fibrillation or flutter. American Journal of Cardiology, 86, 685–688.

    Article  CAS  PubMed  Google Scholar 

  9. Sahn, D. J., DeMaria, A., Kisslo, J., & Weyman, A. (1978). Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation, 58, 1072–1083.

    CAS  PubMed  Google Scholar 

  10. Zabalgoitia, M., Halperin, J. L., Pearce, L. A., Blackshear, J. L., Asinger, R. W., & Hart, R. G. (1998). Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. Stroke prevention in atrial fibrillation III investigators. Journal of the American College of Cardiology, 31, 1622–1626.

    Article  CAS  PubMed  Google Scholar 

  11. Leung, D. Y., Grimm, R. A., & Klein, A. L. (1996). Transesophageal echocardiography-guided approach to cardioversion of atrial fibrillation. Progress in Cardiovascular Diseases, 39, 21–32.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman, H. S., Win, M., Hussain, A., & Sinha, A. (2000). Effects of cardiac glycosides on atrial contractile dysfunction after short-term atrial fibrillation. Chest, 118, 1116–1126.

    Article  CAS  PubMed  Google Scholar 

  13. Torp-Pedersen, C., Moller, M., Kober, L., & Camm, A. J. (2000). Dofetilide for the treatment of atrial fibrillation in patients with congestive heart failure. European Heart Journal, 21, 1204–1206.

    Article  CAS  PubMed  Google Scholar 

  14. Baskin, E. P., Serik, C. M., Wallace, A. A., Brookes, L. M., Selnick, H. G., Claremon, D. A., et al. (1991). Effects of new methanesulfonanilide class III antiarrhythmic agents on myocardial refractoriness and contractility in isolated cardiac muscle. Journal of Cardiovascular Pharmacology, 18, 406–414.

    Article  CAS  PubMed  Google Scholar 

  15. Date, T., Takahashi, A., Iesaka, Y., Miyazaki, H., Yamane, T., Noma, K., et al. (2002). Effect of low-dose isoproterenol infusion on left atrial appendage function soon after cardioversion of chronic atrial tachyarrhythmias. International Journal of Cardiology, 84, 59–67.

    Article  PubMed  Google Scholar 

  16. Wijffels, M. C., Kirchhof, C. J., Dorland, R., & Allessie, M. A. (1995). Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation, 92, 1954–1968.

    CAS  PubMed  Google Scholar 

  17. Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical remodeling in atrial fibrillation: Time course and mechanisms. Circulation, 94, 2968–2973.

    CAS  PubMed  Google Scholar 

  18. Ausma, J., Litjens, N., Lenders, M. H., Duimel, H., Mast, F., Wouters, L., et al. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. Journal of Molecular and Cellular Cardiology, 33, 2083–2094.

    Article  CAS  PubMed  Google Scholar 

  19. Thijssen, V. L., Ausma, J., & Borgers, M. (2001). Structural remodelling during chronic atrial fibrillation: act of programmed cell survival. Cardiovascular Research, 52, 14–24.

    Article  CAS  PubMed  Google Scholar 

  20. Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R., et al. (2001). Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 104, 174–180.

    CAS  PubMed  Google Scholar 

  21. Kneller, J., Sun, H., Leblanc, N., & Nattel, S. (2002). Remodeling of Ca(2+)-handling by atrial tachycardia: evidence for a role in loss of rate-adaptation. Cardiovascular Research, 54, 416–426.

    Article  CAS  PubMed  Google Scholar 

  22. Brundel, B. J., van Gelder, I. C., Henning, R. H., Tuinenburg, A. E., Deelman, L. E., Tieleman, R. G., et al. (1999). Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovascular Research, 42, 443–454.

    Article  CAS  PubMed  Google Scholar 

  23. Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-type Ca2+ currents and human atrial fibrillation. Circulation Research, 85, 428–436.

    PubMed  Google Scholar 

  24. Daoud, E. G., Marcovitz, P., Knight, B. P., Goyal, R., Man, K. C., Strickberger, S. A., et al. (1999). Short-term effect of atrial fibrillation on atrial contractile function in humans. Circulation, 99, 3024–3027.

    CAS  PubMed  Google Scholar 

  25. Goette, A., Arndt, M., Röcken, C., Staack, T., Bechtloff, R., Reinhold, D., et al. (2002). Calpains and cytokines in fibrillating human atria. Am J Physiol Heart Circ Physiol, 283, H264–H272.

    CAS  PubMed  Google Scholar 

  26. Leistad, E., Aksnes, G., Verburg, E., & Christensen, G. (1996). Atrial contractile dysfunction after short-term atrial fibrillation is reduced by verapamil but increased by BAY K8644. Circulation, 93, 1747–1754.

    CAS  PubMed  Google Scholar 

  27. Ross, J., Jr, Miura, T., Kambayashi, M., Eising, G. P., & Ryu, K. H. (1995). Adrenergic control of the force frequency relation. Circulation, 92, 2327–2332.

    PubMed  Google Scholar 

  28. Takagi, M., Doi, A., Shirai, N., Hirata, K., Takemoto, Y., Takeuchi, K., et al. (2005). Acute improvement of atrial mechanical stunning after electrical cardioversion of persistent atrial fibrillation: comparison between biatrial and single atrial pacing. Heart, 91, 58–63.

    Article  CAS  PubMed  Google Scholar 

  29. Chang, C. M., Wu, T. J., Zhou, S., Doshi, R. N., Lee, M. H., Ohara, T., et al. (2001). Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation, 103, 22–25.

    CAS  PubMed  Google Scholar 

  30. Kamp, O., Verhorst, P. M., Welling, R. C., & Visser, C. A. (1999). Importance of left atrial appendage flow as a predictor of thromboembolic events in patients with atrial fibrillation. European Heart Journal, 20, 979–985.

    Article  CAS  PubMed  Google Scholar 

  31. Grimm, R. A., Stewart, W. J., Arheart, K., Thomas, J. D., & Klein, A. L. (1997). Left atrial appendage ‘stunning’ after electrical cardioversion of atrial flutter: an attenuated response compared with atrial fibrillation as the mechanism for lower susceptibility to thromboembolic events. Journal of the American College of Cardiology, 29, 582–589.

    Article  CAS  PubMed  Google Scholar 

  32. Omran, H., Jung, W., MacCarter, D., Schimpf, R., Rabahieh, R., Schumacher, B., et al. (1999). Right atrial thrombi and depressed right atrial appendage function after cardioversion of atrial fibrillation. Echocardiography, 16, 245–251.

    Article  PubMed  Google Scholar 

  33. Tabata, T., Oki, T., Iuchi, A., Yamada, H., Manabe, K., Fukuda, K., et al. (1997). Evaluation of left atrial appendage function by measurement of changes in flow velocity patterns after electrical cardioversion in patients with isolated atrial fibrillation. American Journal of Cardiology, 79, 615–620.

    Article  CAS  PubMed  Google Scholar 

  34. Harjai, K. J., Mobarek, S. K., Cheirif, J., Boulos, L. M., Murgo, J. P., & Abi-Samra, F. (1997). Clinical variables affecting recovery of left atrial mechanical function after cardioversion from atrial fibrillation. Journal of the American College of Cardiology, 30, 481–486.

    Article  CAS  PubMed  Google Scholar 

  35. Verhorst, P. M., Kamp, O., Welling, R. C., Van Eenige, M. J., & Visser, C. A. (1997). Transesophageal echocardiographic predictors for maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation. American Journal of Cardiology, 79, 1355–1359.

    Article  CAS  PubMed  Google Scholar 

  36. Dethy, M., Chassat, C., Roy, D., & Mercier, L. A. (1988). Doppler echocardiographic predictors of recurrence of atrial fibrillation after cardioversion. American Journal of Cardiology, 62, 723–726.

    Article  CAS  PubMed  Google Scholar 

  37. Nishino, M., Hoshida, S., Tanouchi, J., Ito, T., Kato, J., Iwai, K., et al. (2000). Time to recover from atrial hormonal, mechanical and electrical dysfunction after successful electrical cardioversion of persistent atrial fibrillation. American Journal of Cardiology, 5, 1451–1454.

    Article  Google Scholar 

  38. Manning, W. J., Silverman, D. I., Katz, S. E., Riley, M. F., Come, P. C., Doherty, R. M., et al. (1994). Impaired left atrial mechanical function after cardioversion: relation to the duration of atrial fibrillation. Journal of the American College of Cardiology, 23, 1535–1540.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grant Q20081208 from the Department of Education of Hubei Province, China. We are indebted to the participants in the Ultrasound Department in First People’s Hospital of Jingzhou for their outstanding commitment and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shaning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yujing, W., Congxin, H., Shaning, Y. et al. Digitalis Does not Improve Left Atrial Mechanical Dysfunction After Successful Electrical Cardioversion of Chronic Atrial Fibrillation. Cell Biochem Biophys 57, 27–34 (2010). https://doi.org/10.1007/s12013-010-9080-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9080-5

Keywords

Navigation