Skip to main content

Advertisement

Log in

Fluorescent Biosensors of Intracellular Targets from Genetically Encoded Reporters to Modular Polypeptide Probes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

With the escalation of drug discovery programmes, it has become essential to visualize and monitor biological activities in healthy and pathological cells, with high spatial and temporal resolution. To this aim, the development of probes and sensors, which can report on the levels and activities of specific intracellular targets, has become essential. Together with the discovery of the Green Fluorescent Protein (GFP), and the development of GFP-based reporters, recent advances in the synthesis of small molecule fluorescent probes, and the explosion of fluorescence-based imaging technologies, the biosensor field has witnessed a dramatic expansion of fluorescence-based reporters which can be applied to complex biological samples, living cells and tissues to probe protein/protein interactions, conformational changes and posttranslational modifications. Here, we review recent developments in the field of fluorescent biosensor technology. We describe different varieties and categories of fluorescent biosensors together with an overview of the technologies commonly employed to image biosensors in cellulo and in vivo. We discuss issues and strategies related to the choice of synthetic fluorescent probes, labelling, quenching, caging and intracellular delivery of biosensors. Finally, we provide examples of some well-characterized genetically encoded FRET reporter systems, peptide and protein biosensors and describe biosensor applications in a wide variety of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CDK:

Cyclin-dependent kinase

CPP:

Cell-penetrating peptide

CRS:

Cytoplasmic retention sequence

FACS:

Fluorescence-activated cell sorting

FCS:

Fluorescence correlation spectroscopy

FP:

Fluorescent protein

FRET:

Fluorescence resonance energy transfer

FLIM:

Fuorescence life-time imaging

GFP:

Green fluorescent protein

IRFP:

Infra-red fluorescent protein

Mant:

Methylanthraniloyl

MMP:

Matrix metalloproteinase

NIRF:

Near-infrared fluorescence

NLS:

Nuclear localization sequence

PBD:

p21-Derived binding domain

PTD:

Protein transduction domain

RBD:

RhoA-Binding domain

References

  1. Turner, A. P. F., Karube, I., & Wilson, G. S. (1987). Biosensors: Fundamentals and applications. Oxford: Oxford University Press.

    Google Scholar 

  2. Clark, L. C., Jr. (1956). Monitor and control of blood and tissue oxygen tensions. Transactions of the American Society for Artificial Internal Organs, 2, 41–48.

    Google Scholar 

  3. Clark, L. C., Jr. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Science, 102, 29–45.

    Google Scholar 

  4. Guilbault, G. G., & Montalvo, J. (1969). A urea-specific enzyme electrode. Journal of the American Chemical Society, 91, 2164–2569.

    PubMed  Google Scholar 

  5. Cooney, C. L., Weaver, J. C., Tannebaum, S. R., Faller, S. R., Shields, D. V., & Jahnke, M. (1974). Thermal enzymes probe: A novel approach to chemical analysis. In E. K. Pye & L. B. Wingard Jr. (Eds.), Enzyme engineering (Vol. 2, pp. 411–417). New York: Plenum.

    Google Scholar 

  6. Mosbach, K., & Danielsson, B. (1974). An enzyme thermistor. Biochimica et Biophysica Acta, 364, 140–145.

    PubMed  Google Scholar 

  7. Divies, C. (1975). Remarks on ethanol oxidation by an Acetobacter-xylinum microbial electrode. Annales de Microbiologie, A126, 175–186.

    Google Scholar 

  8. Lubbers, D. W., & Opitz, N. Z. (1975). The pCO2-/pO2-optode new probe for measurement of partial pressure of carbon dioxide or partial pressure of oxygen in fluids and gases. Zeitschrift für Naturforschung, 30c, 532–533.

    Google Scholar 

  9. Voelkl, K. P., Opitz, N., & Lubbers, D. W. (1980). Continuous measurement of concentrations of alcohol using a fluorescence-photometric enzymatic method. Fresenius’ Zeitschrift für Analytische Chemie, 301, 162–163.

    Google Scholar 

  10. Clemens, A. H., Chang, P. H., & Myers, R. W. (1976) Development of an automatic system of insulin infusion controlled by blood sugar, its system for the determination of glucose and control algorithms. Proceedings of the Journées Annuelles de Diabétologie de l'Hôtel-Dieu, 269–278.

  11. Shichiri, M., Kawamori, R., Yamasaki, R., Hakui, Y., & Abe, H. (1982). Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet, 2, 1129–1131.

    PubMed  Google Scholar 

  12. Liedberg, B., Nylander, C., & Lundstrm, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 4, 299–304.

    Google Scholar 

  13. Turner, A. P. F. (1995). Advances in biosensors. London: JAI Press.

    Google Scholar 

  14. Cooper, M. A. (2002). Optical biosensors in drug discovery. Nature Reviews Drug Discovery, 1, 515–528.

    PubMed  Google Scholar 

  15. Tsien, R. Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67, 509–544.

    PubMed  Google Scholar 

  16. Ellenberg, J., Lippincott-Schwartz, J., & Presley, J. F. (1999). Dual-colour imaging with GFP variants. Trends in Cell Biology, 9, 52–56.

    PubMed  Google Scholar 

  17. Bastiaens, P. I., & Pepperkok, R. (2000). Observing proteins in their natural habitat: The living cell. Trends in Biochemical Sciences, 25, 631–637.

    PubMed  Google Scholar 

  18. Wouters, F. S., Verveer, P. J., & Bastiaens, P. I. (2001). Imaging biochemistry inside cells. Trends in Cell Biology, 11, 203–211.

    PubMed  Google Scholar 

  19. Lippincott-Schwartz, J., Snapp, E., & Kenworthy, A. (2001). Studying protein dynamics in living cells. Nature Reviews Molecular Cell Biology, 2, 444–456.

    PubMed  Google Scholar 

  20. Zhang, J., Campbell, R. E., Ting, A. Y., & Tsien, R. Y. (2002). Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology, 3, 906–918.

    PubMed  Google Scholar 

  21. Lippincott-Schwartz, J., & Patterson, G. H. (2003). Development and use of fluorescent protein markers in living cells. Science, 300, 87–91.

    PubMed  Google Scholar 

  22. Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nat Methods., 2, 905–909.

    PubMed  Google Scholar 

  23. Tsien, R. Y. (2005). Breeding and building molecules to spy on cells and tumors. FEBS Letter, 579, 927–932.

    Google Scholar 

  24. Giepmans, B. N., Adams, S. R., Ellisman, M. H., & Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. Science, 312, 217–224.

    PubMed  Google Scholar 

  25. Shaner, N. C., Patterson, G. H., & Davidson, M. W. (2007). Advances in fluorescent protein technology. Journal of Cellular Science, 120, 4247–4260.

    Google Scholar 

  26. Fernandez-Suarez, M., & Ting, A. Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology, 9, 929–943.

    PubMed  Google Scholar 

  27. Lavis, L. D., & Raines, R. T. (2008). Bright ideas for chemical biology. ACS Chemical Biology, 3, 142–155.

    PubMed  Google Scholar 

  28. Giuliano, K. A., Post, P. L., Hahn, K. M., & Taylor, D. L. (1995). Fluorescent protein biosensors: Measurement of molecular dynamics in living cells. Annual Review of Biophysics and Biomolecular Structure, 24, 405–434.

    PubMed  Google Scholar 

  29. Truong, K., & Ikura, M. (2001). The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Current Opinion in Cellular Biology, 11, 573–578.

    Google Scholar 

  30. Hahn, K., & Toutchkine, A. (2002). Live-cell fluorescent biosensors for activated signaling proteins. Current Opinion in Cell Biology, 14, 167–172.

    PubMed  Google Scholar 

  31. Allen, M. D., DiPilato, L. M., Ananthanarayanan, B., Newman, R. H., Ni, Q., & Zhang, J. (2008). Dynamic visualization of signaling activities in living cells. Science Signal, 1(37), pt6.

    Google Scholar 

  32. VanEngelenburg, S. B., & Palmer, A. E. (2008). Fluorescent biosensors of protein function. Current Opinion in Chemical Biology, 12, 60–65.

    PubMed  Google Scholar 

  33. Carlson, H. J., & Campbell, R. E. (2009). Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Current Opinion in Biotechnology, 20, 19–27.

    PubMed  Google Scholar 

  34. Giuliano, K. A., & Taylor, D. L. (1998). Fluorescent-protein biosensors: New tools for drug discovery. Trends in Biotechnology, 16, 135–140.

    PubMed  Google Scholar 

  35. Lang, P., Yeow, K., Nichols, A., & Scheer, A. (2006). Cellular imaging in drug discovery. Nature Reviews Drug Discovery, 5, 343–356.

    PubMed  Google Scholar 

  36. Willmann, J. K., van Bruggen, N., Dinkelborg, L. M., & Gambhir, S. S. (2008). Molecular imaging in drug development. Nature Review Drug Discovery, 7, 591–607.

    Google Scholar 

  37. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., et al. (1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature., 388, 882–887.

    PubMed  Google Scholar 

  38. Miyawaki, A., Griesbeck, O., Heim, R., & Tsien, R. Y. (1999). Dynamic and quantitative Ca2+ measurements using improved cameleons. Proceedings of the National Academy of Sciences of the United States of America, 96, 2135–2140.

    PubMed  Google Scholar 

  39. Zhang, J., Ma, Y., Taylor, S. S., & Tsien, R. Y. (2001). Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proceedings of the National Academy of Sciences of the United States of America, 98, 14997–15002.

    PubMed  Google Scholar 

  40. Ting, A. Y., Kain, K. H., Klemke, R. L., & Tsien, R. Y. (2001). Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 15003–15008.

    PubMed  Google Scholar 

  41. Sato, M., Ozawa, T., Inukai, K., Asano, T., & Umezawa, Y. (2002). Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnology, 20, 287–294.

    PubMed  Google Scholar 

  42. Violin, J. D., Zhang, J., Tsien, R. Y., & Newton, A. C. (2003). A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. Journal of Cell Biology, 161, 899–909.

    PubMed  Google Scholar 

  43. Brumbaugh, J., Schleifenbaum, A., Gasch, A., Sattler, M., & Schultz, C. (2006). A dual parameter FRET probe for measuring PKC and PKA activity in living cells. Journal of the American Chemical Society, 128, 24–25.

    PubMed  Google Scholar 

  44. Allen, M. D., & Zhang, J. (2006). Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochemical and Biophysical Research Communications, 348, 716–721.

    PubMed  Google Scholar 

  45. Zhang, J., & Allen, M. D. (2007). FRET-based biosensors for protein kinases: Illuminating the kinome. Molecular Biosystems, 3, 759–765.

    PubMed  Google Scholar 

  46. Sato, M., Kawai, Y., & Umezawa, Y. (2007). Genetically encoded fluorescent indicators to visualize protein phosphorylation by extracellular signal-regulated kinase in single living cells. Analytical Chemistry, 79, 2570–2575.

    PubMed  Google Scholar 

  47. Johnson, S. A., Zhongsheng, Y., & Hunter, T. (2007). Monitoring ATM kinase activity in living cells. DNA Repair, 6, 1277–1284.

    PubMed  Google Scholar 

  48. Lin, C. W., Jao, C. Y., & Ting, A. Y. (2004). Genetically encoded fluorescent reporters of histone methylation in living cells. Journal of the American Chemical Society, 126, 5982–5983.

    PubMed  Google Scholar 

  49. Sasaki, K., Ito, T., Nishino, N., Khochbin, S., & Yoshida, M. (2009). Real-time imaging of histone H4 hyperacetylation in living cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 16257–16262.

    PubMed  Google Scholar 

  50. Pertz, O., & Hahn, K. M. (2004). Designing biosensors for Rho family proteins-deciphering the dynamics of Rho family GTPase activation in living cells. Journal of Cell Science, 117, 1313–1318.

    PubMed  Google Scholar 

  51. Hodgson, L., Pertz, O., & Hahn, K. M. (2008). Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods in Cell Biology, 85, 63–81.

    PubMed  Google Scholar 

  52. Mahajan, N. P., Harrison-Shostak, D. C., Michaux, J., & Herman, B. (1999). Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chemical Biology, 6, 401–409.

    Google Scholar 

  53. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., & Cravatt, B. F. (2004). Activity-based probes for the proteomic profiling of metalloproteases (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 10000–10005.

    PubMed  Google Scholar 

  54. Neefjes, J., & Dantuma, N. P. (2004). Fluorescent probes for proteolysis: Tools for drug discovery. Nature Reviews Drug Discovery, 3, 58–69.

    PubMed  Google Scholar 

  55. Ai, H. W., Hazelwood, K. L., Davidson, M. W., & Campbell, R. E. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods, 5, 401–403.

    PubMed  Google Scholar 

  56. Waggoner, A. (2006). Fluorescent labels for proteomics and genomics. Current Opinion in Chemical Biology, 10, 62–66.

    PubMed  Google Scholar 

  57. Frangioni, J. V. (2003). In vivo near-infrared fluorescence imaging. Current Opinion in Chemical Biology, 7, 626–634.

    PubMed  Google Scholar 

  58. Pierce, M. C., Javier, D. J., & Richards-Kortum, R. (2008). Optical contrast agents and imaging systems for detection and diagnosis of cancer. International Journal of Cancer, 123, 1979–1990.

    Google Scholar 

  59. Frangioni, J. V. (2008). New technologies for human cancer imaging. Journal of Clinical Oncology, 26, 4012–4021.

    PubMed  Google Scholar 

  60. Jaiswal, J. K., Goldman, E. R., Mattoussi, H., & Simon, S. M. (2004). Use of quantum dots for live cell imaging. Nature Methods, 1, 73–78.

    PubMed  Google Scholar 

  61. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.

    PubMed  Google Scholar 

  62. Zhou, M., & Ghosh, I. (2006). Quantum dots and peptides: A bright future together. Current Trends in Peptide Science, 88, 325–339.

    Google Scholar 

  63. Resch-Genger, U., Grabolle, M., Cavalière-Jaricot, S., Nitschke, R., & Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 5, 763–775.

    PubMed  Google Scholar 

  64. Texier, I., & Josser, V. (2009). In vivo imaging of quantum dots. Methods in Molecular Biology, 544, 393–406.

    PubMed  Google Scholar 

  65. Suzuki, M., Husimi, Y., Komatsu, H., Suzuki, K., & Douglas, K. T. (2008). Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. Journal of the American Chemical Society, 130, 5720–5725.

    PubMed  Google Scholar 

  66. Adams, S. R., Campbell, R. E., Gross, L. A., Martin, B. R., Walkup, G. K., Yao, Y., et al. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications. Journal of the American Chemical Society, 124, 6063–6076.

    PubMed  Google Scholar 

  67. Griffin, B. A., Adams, S. R., & Tsien, R. Y. (1998). Specific covalent labelling of recombinant protein molecules inside live cells. Science, 281, 269–272.

    PubMed  Google Scholar 

  68. Jäger, M., Nir, E., & Weiss, S. (2006). Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Science, 15, 640–646.

    PubMed  Google Scholar 

  69. Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., & Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nature Biotechnology, 21, 86–89.

    PubMed  Google Scholar 

  70. Keppler, A., Pick, H., Arrivoli, C., Vogel, H., & Johnsson, K. (2004). Labeling of fusion proteins with synthetic fluorophores in live cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 9955–9959.

    PubMed  Google Scholar 

  71. Gautier, A., Juillerat, A., Heinis, C., Corrêa, I. R., Jr., Kindermann, M., Beaufils, F., et al. (2008). CLIP Tag an engineered protein tag for multiprotein labeling in living cells. Chemical Biology, 15, 128–136.

    Google Scholar 

  72. Wang, J., Xie, J., & Schultz, P. G. (2006). A genetically encoded fluorescent amino acid. Journal of the American Chemical Society, 128, 8738–8739.

    PubMed  Google Scholar 

  73. Sharma, V., Agnes, R. S., & Lawrence, D. S. (2007). Deep quench: An expanded dynamic range for protein kinase sensors. Journal of the American Chemical Society, 129, 2742–2743.

    PubMed  Google Scholar 

  74. Blum, G., Mullins, S. R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M. J., et al. (2005). Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology, 1, 203–209.

    PubMed  Google Scholar 

  75. Ogawa, M., Kosaka, N., Choyke, P. L., & Kobayashi, H. (2009). H-type dimer formation of fluorophores: A mechanism for activatable, in vivo optical molecular imaging. ACS Chemical Biology, 4, 535–546.

    PubMed  Google Scholar 

  76. Ogawa, M., Kosaka, N., Longmire, M. R., Urano, Y., Choyke, P. L., & Kobayashi, H. (2009). Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. Molecular Pharmacology, 6, 386–395.

    Google Scholar 

  77. Curley, K., & Lawrence, D. S. (1999). Light-activated proteins. Current Opinion in Chemical Biology, 3, 84–88.

    PubMed  Google Scholar 

  78. Lawrence, D. S. (2005). The preparation and in vivo applications of caged peptides and proteins. Current Opinion in Chemical Biology, 9, 570–575.

    PubMed  Google Scholar 

  79. Mayer, G., & Heckel, A. (2006). Biologically active molecules with a “light switch”. Angewandte Chemie (International ed. in English), 45, 4900–4921.

    Google Scholar 

  80. Ellis-Davies, G. C. R. (2007). Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nature Methods, 4, 619–628.

    PubMed  Google Scholar 

  81. Li, H., Hah, J. M., & Lawrence, D. S. (2008). Light-mediated liberation of enzymatic activity: “Small molecule” caged protein equivalents. Journal of the American Chemical Society, 130, 10474–10475.

    PubMed  Google Scholar 

  82. Lee, H. M., Larson, D. R., & Lawrence, D. S. (2009). Illuminating the chemistry of life: Design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chemical Biology, 4, 409–427.

    PubMed  Google Scholar 

  83. Lavis, L. D., Chao, T. Y., & Raines, R. T. (2006). Fluorogenic label for biomolecular imaging. ACS Chemical Biology, 1, 252–260.

    PubMed  Google Scholar 

  84. Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., et al. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 461, 104–108.

    PubMed  Google Scholar 

  85. McNeil P.L. (2001) Direct introduction of molecules into cells. Currents Protocol in Cell Biology. Chapter 20:Unit 20.1.

  86. Schwarze, S. R., Hruska, K. A., & Dowdy, S. F. (2000). Protein transduction: Unrestricted delivery into all cells? Trends in Cell Biology, 10, 290–295.

    PubMed  Google Scholar 

  87. Snyder, E. L., & Dowdy, S. F. (2005). Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opinion in Drug Delivery, 2, 43–51.

    Google Scholar 

  88. Deshayes, S., Morris, M. C., Divita, G., & Heitz, F. (2005). Cell-penetrating peptides: Tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences, 62, 1839–1849.

    PubMed  Google Scholar 

  89. Morris, M. C., Deshayes, S., Heitz, F., & Divita, G. (2008). Cell penetrating peptides: From molecular mechanisms to therapeutics. Biology of the Cell, 100, 201–217.

    PubMed  Google Scholar 

  90. Morris, M. C., Depollier, J., Mery, J., Heitz, F., & Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19, 1173–1176.

    PubMed  Google Scholar 

  91. Morris, M. C., Chaloin, L., Choob, M., Archdeacon, J., Heitz, F., & Divita, G. (2004). The combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Therapy, 11, 757–764.

    PubMed  Google Scholar 

  92. Gros, E., Deshayes, S., Morris, M. C., Aldrian-Herrada, G., Depollier, J., Heitz, F., et al. (2006). A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochimica et Biophysica Acta, 1758, 384–393.

    PubMed  Google Scholar 

  93. Aoshiba, K., Yokohori, N., & Nagai, A. (2003). Alveolar wall apoptosis causes lung destruction and amphysematous changes. American Journal of Respiratory Cell and Molecular Biology, 28, 555–562.

    PubMed  Google Scholar 

  94. Maron, M. B., Folkesson, H. G., Stader, S. M., & Walro, J. M. (2005). PKA delivery to the distal lung air spaces increases alveolar liquid clearance after isoproterenol-induced alveolar epithelial PKA desensitization. American Journal of Physiology Lung Cellular and Molecular Physiology, 289, 349–354.

    Google Scholar 

  95. Allen, T. (2002). Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer, 2, 750–761.

    PubMed  Google Scholar 

  96. Schrama, D., Reisfeld, R., & Becker, J. (2006). Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery, 5, 147–159.

    PubMed  Google Scholar 

  97. Stephens, D. J., & Allan, V. J. (2003). Light microscopy techniques for live cell imaging. Science., 300, 82–86.

    PubMed  Google Scholar 

  98. Waters, J. C. (2007). Live-cell fluorescence imaging. Methods in Cell Biology, 81, 115–140.

    PubMed  Google Scholar 

  99. Waters, J. C. (2009). Accuracy and precision in quantitative fluorescence microscopy. Journal of Cell Biology, 185, 1135–1148.

    PubMed  Google Scholar 

  100. Stryer, L., & Haugland, R. P. (1967). Energy transfer: A spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America, 58, 719–726.

    PubMed  Google Scholar 

  101. Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. Annual Review of Biochemistry, 47, 819–846.

    PubMed  Google Scholar 

  102. Wu, P., & Brand, L. (1994). Resonance energy transfer: Methods and applications. Analytical Biochemistry, 218, 1–13.

    PubMed  Google Scholar 

  103. Jares-Erijman, E. A., & Jovin, T. M. (2003). FRET imaging. Nature Biotechnology, 21, 1387–1395.

    PubMed  Google Scholar 

  104. Jares-Erijman, E. A., & Jovin, T. M. (2006). Imaging molecular interactions in living cells by FRET microscopy. Current Opinion in Chemical Biology, 10, 409–416.

    PubMed  Google Scholar 

  105. Vogel, S. S., Thaler, C., & Koushik, S. V. (2006). Fanciful FRET. Science’s STKE, 331, re2.

    Google Scholar 

  106. Ciruela, F. (2008). Fluorescence-based methods in the study of protein–protein interactions in living cells. Current Opinion in Biotechnology, 19, 338–343.

    PubMed  Google Scholar 

  107. Wallrabe, H., & Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Current Opinion in Biotechnology, 16, 19–27.

    PubMed  Google Scholar 

  108. Peter, M., & Amer-Beg, S. M. (2004). Imaging molecular interactions by multiphoton FLIM. Biology of the Cell, 96, 231–236.

    PubMed  Google Scholar 

  109. Medina, M. A., & Schwille, P. (2002). Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays, 24, 758–764.

    PubMed  Google Scholar 

  110. Langowski, J. (2008). Protein–protein interactions determined by fluorescence correlation spectroscopy. Methods in Cell Biology, 85, 471–484.

    PubMed  Google Scholar 

  111. Giuliano, K. A., & Taylor, D. L. (1994). Fluorescent actin analogs with a high affinity for profilin in vitro exhibit an enhanced gradient of assembly in living cells. Journal of Cell Biology, 124, 971–983.

    PubMed  Google Scholar 

  112. Kreis, T. E., Geiger, B., & Schlessinger, J. (1982). Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell, 29, 835–845.

    PubMed  Google Scholar 

  113. Gorbsky, G. J., Sammak, P. J., & Borisy, G. G. (1988). Microtubule dynamics and chromosome motion visualized in living anaphase cells. Journal of Cell Biology, 106, 1185–1192.

    PubMed  Google Scholar 

  114. Kolega, J., & Taylor, D. L. (1993). Gradients in the concentration and assembly of myosin II in living fibroblasts during locomotion and fiber transport. Molecular Biology of the Cell, 4, 819–836.

    PubMed  Google Scholar 

  115. Kreis, T. E., & Birchmeier, W. (1982). Microinjections of fluorescently labelled proteins into living cells with emphasis on cytoskeletal proteins. International Review of Cytology, 75, 209–214.

    PubMed  Google Scholar 

  116. McKenna, N. M., Wang, Y., & Konkel, M. E. (1989). Formation and movement of myosin-containing structures in living fibroblasts. Journal of Cell Biology, 109, 1163–1172.

    PubMed  Google Scholar 

  117. Mittal, B., Sanger, J. M., & Sanger, J. W. (1987). Binding and distribution of fluorescently labeled filamin in permeabilized and living cells. Cell Motility and the Cytoskeleton, 8, 345–359.

    PubMed  Google Scholar 

  118. Mittal, B., Sanger, J. M., & Sanger, J. W. (1989). Visualization of intermediate filaments in living cells using fluorescently labeled desmin. Cell Motility and the Cytoskeleton, 12, 127–138.

    PubMed  Google Scholar 

  119. Riedl, J., Crevenna, A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M., et al. (2008). Lifeact: A versatile marker to visualize F-actin. Nature Methods, 5, 605–607.

    PubMed  Google Scholar 

  120. Gray, A., Van Der Kaay, J., & Downes, C. P. (1999). The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochemical Journal, 344, 929–936.

    PubMed  Google Scholar 

  121. Oancea, E., Teruel, M. N., Quest, A. F., & Meyer, T. (1998). Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. Journal of Cell Biology, 140, 485–498.

    PubMed  Google Scholar 

  122. Teruel, M. N., & Meyer, T. (2002). Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module. Science, 295, 1910–1912.

    PubMed  Google Scholar 

  123. Oancea, E., & Meyer, T. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell, 95, 307–318.

    PubMed  Google Scholar 

  124. Adams, S. R., Harootunian, A., Buechler, Y. J., Taylor, S. S., & Tsien, R. Y. (1991). Fluorescence ratio imaging of cyclic AMP in single cells. Nature, 349, 694–697.

    PubMed  Google Scholar 

  125. Zaccolo, M., et al. (2000). A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biology, 2, 25–29.

    PubMed  Google Scholar 

  126. Hahn, K. M., Waggoner, A. S., & Taylor, D. L. (1990). A calcium-sensitive fluorescent analog of calmodulin based on a novel calmodulin-binding fluorophore. Journal of Biological Chemistry, 265, 20335–20345.

    PubMed  Google Scholar 

  127. Baird, G. S., Zacharieas, D. A., & Tsien, R. Y. (1999). Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 11241–11246.

    PubMed  Google Scholar 

  128. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharieas, D. A., & Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein mechanism and applications. Journal of Biological Chemistry, 276, 29188–29194.

    PubMed  Google Scholar 

  129. Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology, 19, 137–141.

    PubMed  Google Scholar 

  130. Nagai, T., Sawano, A., Park, E., & Miyawaki, A. (2001). Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 98, 3197–3202.

    PubMed  Google Scholar 

  131. Webb, M. R., & Corrie, J. E. (2001). Fluorescent coumarin-labeled nucleotides to measure ADP release from actomyosin. Biophysical Journal, 81, 1562–1569.

    PubMed  Google Scholar 

  132. Webb, M. R., Reid, G. P., Munasinghe, V. R., & Corrie, J. E. (2004). A series of related nucleotide analogues that aids optimization of fluorescence signals in probing the mechanism of P-loop ATPases, such as actomyosin. Biochemistry, 43, 14463–14471.

    PubMed  Google Scholar 

  133. Webb, M. R. (2007). Development of fluorescent biosensors for probing the function of motor proteins. Molecular Biosystems, 3, 249–256.

    PubMed  Google Scholar 

  134. Cochran, J. C., Sontag, C. A., Maliga, Z., Kapoor, T. M., Correia, J. J., & Gilbert, S. P. (2004). Mechanistic analysis of the mitotic kinesin Eg5. Journal of Biological Chemistry, 279, 38861–38870.

    PubMed  Google Scholar 

  135. Heitz, F., Morris, M. C., Fesquet, D., Cavadore, J. C., Dorée, M., & Divita, G. (1997). Interactions of cyclins with cyclin-dependent kinases: A common interactive mechanism. Biochemistry, 36, 4995–5003.

    PubMed  Google Scholar 

  136. Hemsath, L., & Ahmadian, M. R. (2005). Fluorescence approaches for monitoring interactions of Rho GTPases with nucleotides, regulators, and effectors. Methods, 37, 173–182.

    PubMed  Google Scholar 

  137. Chen, C. A., Yeh, R. H., Yan, X., & Lawrence, D. S. (2004). Biosensors of protein kinase action: From in vitro assays to living cells. Biochimica et Biophysica Acta, 1697, 39–51.

    PubMed  Google Scholar 

  138. Sharma, V., Wang, Q., & Lawrence, D. S. (2008). Peptide-based fluorescent sensors of protein kinase activity: Design and applications. Biochimica et Biophysica Acta, 1784, 94–99.

    PubMed  Google Scholar 

  139. Chen, C. A., Yeh, R. H., & Lawrence, D. S. (2002). Design and synthesis of a fluorescent reporter of protein kinase activity. Journal of the American Chemical Society, 124, 3840–3841.

    PubMed  Google Scholar 

  140. Wang, Q., & Lawrence, D. S. (2005). Phosphorylation-driven protein-protein interactions: A protein kinase sensing system. Journal of the American Chemical Society, 127, 7684–7685.

    PubMed  Google Scholar 

  141. Wang, Q., Cahill, S. M., Blumenstein, M., & Lawrence, D. S. (2006). Self-reporting fluorescent substrates of protein tyrosine kinases. Journal of the American Chemical Society, 128, 1808–1809.

    PubMed  Google Scholar 

  142. Yeh, R. H., Yan, X., Cammer, M., Bresnick, A. R., & Lawrence, D. S. (2002). Real time visualization of protein kinase activity in living cells. Journal of Biological Chemistry, 277, 11527–11532.

    PubMed  Google Scholar 

  143. Lawrence, D. S., & Wang, Q. (2007). Seeing is believing: Peptide-based fluorescent sensors of protein tyrosine kinase activity. Chembiochem, 8, 373–378.

    PubMed  Google Scholar 

  144. Anai, T., Nakata, B., Koshi, Y., Ojida, A., & Hamachi, I. (2007). Design of a hybrid biosensor for enhanced phosphopeptide recognition based on a phosphoprotein binding domain coupled with a fluorescent chemosensor. Journal of American Chemical Society, 129, 6232–6239.

    Google Scholar 

  145. Veldhuyzen, W. F., Nguyen, Q., McMaster, G., & Lawrence, D. S. (2003). A light-activated probe of intracellular protein kinase activity. Journal of the American Chemical Society, 125, 13358–13359.

    PubMed  Google Scholar 

  146. Dai, Z., Dulyaninova, N. G., Kumar, S., Bresnick, A. R., & Lawrence, D. S. (2007). Visual snapshots of intracellular kinase activity at the onset of mitosis. Chemical Biology, 14, 1254–1260.

    Google Scholar 

  147. Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., & Hahn, K. M. (2000). Localized Rac activation dynamics visualized in living cells. Science, 290, 333–337.

    PubMed  Google Scholar 

  148. Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.

    PubMed  Google Scholar 

  149. Toutchkine, A., Kraynov, V., & Hahn, K. (2003). Solvent-sensitive dyes to report protein conformational changes in living cells. Journal of the American Chemical Society, 125, 4132–4145.

    PubMed  Google Scholar 

  150. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science., 305, 1615–1619.

    PubMed  Google Scholar 

  151. Hodgson, L., Nalbant, P., Shen, F., & Hahn, K. (2006). Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation. Methods in Enzymology, 406, 140–156.

    PubMed  Google Scholar 

  152. Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., et al. (2009). Coordination of Rho GTPase activities during cell protrusion. Nature, 461, 99–103.

    PubMed  Google Scholar 

  153. Edgington, L. E., Berger, A. B., Blum, G., Albrow, V. E., Paulick, M. G., Lineberry, N., et al. (2009). Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nature Medicine, 15, 967–973.

    PubMed  Google Scholar 

  154. Tung, C. H., Bredow, S., Mahmood, U., & Weissleder, R. (1999). Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chemistry, 10, 892–896.

    PubMed  Google Scholar 

  155. Tung, C. H., Mahmood, U., Bredow, S., & Weissleder, R. (2000). In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Research, 60, 4953–4958.

    PubMed  Google Scholar 

  156. Wunder, A., Tung, C. H., Müller-Ladner, U., Weissleder, R., & Mahmood, U. (2004). In vivo imaging of protease activity in arthritis: A novel approach for monitoring treatment response. Arthritis and Rheumatism, 50, 2459–2465.

    PubMed  Google Scholar 

  157. Jaffer, F. A., Kim, D. E., Quinti, L., Tung, C. H., Aikawa, E., Pande, A. N., et al. (2007). Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation., 115, 2292–2298.

    PubMed  Google Scholar 

  158. Chen, J., Tung, C. H., Mahmood, U., Ntziachristos, V., Gyurko, R., Fishman, M. C., et al. (2002). In vivo imaging of proteolytic activity in atherosclerosis. Circulation, 105, 2766–2771.

    PubMed  Google Scholar 

  159. Kozloff, K. M., Quinti, L., Patntirapong, S., Hauschka, P. V., Tung, C. H., Weissleder, R., et al. (2009). Non-invasive optical detection of cathepsin K-mediated fluorescence reveals osteoclast activity in vitro and in vivo. Bone., 44, 190–198.

    PubMed  Google Scholar 

  160. Tung, C. H., Gerszten, R. E., Jaffer, F. A., & Weissleder, R. (2002). A novel near-infrared fluorescence sensor for detection of thrombin activation in blood. Chembiochem., 3, 207–211.

    PubMed  Google Scholar 

  161. Pham, W., Choi, Y., Weissleder, R., & Tung, C. H. (2004). Developing a peptide-based near-infrared molecular probe for protease sensing. Bioconjugate Chemistry, 15, 1403–1407.

    PubMed  Google Scholar 

  162. McIntyre, J. O., & Matrisian, L. M. (2009). Optical proteolytic beacons for in vivo detection of matrix metalloproteinase activity. Methods in Molecular Biology, 539, 155–174.

    PubMed  Google Scholar 

  163. Bremer, C., Tung, C. H., & Weissleder, R. (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Medicine, 7, 743–748.

    PubMed  Google Scholar 

  164. Weissleder, R., Tung, C. H., Mahmood, U., & Bogdanov, A., Jr. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.

    PubMed  Google Scholar 

  165. Bremer, C., Tung, C. H., Bogdanov, A., Jr., & Weissleder, R. (2002). Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology, 222, 814–818.

    PubMed  Google Scholar 

  166. Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C. H., et al. (2002). Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology, 122, 406–414.

    PubMed  Google Scholar 

  167. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M., & Masucci, M. G. (2000). Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnology, 18, 538–543.

    PubMed  Google Scholar 

  168. Bence, N. F., Sampat, R. M., & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292, 1552–1555.

    PubMed  Google Scholar 

  169. Lindsten, K., Menéndez-Benito, V., Masucci, M. G., & Dantuma, N. P. (2003). A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnology, 21, 897–902.

    PubMed  Google Scholar 

  170. Luker, G. D., Pica, C. M., Song, J., Luker, K. E., & Piwnica-Worms, D. (2003). Imaging 26S proteasome activity and inhibition in living mice. Nature Medicine, 9, 969–973.

    PubMed  Google Scholar 

  171. Lindsten, K., Uhlíková, T., Konvalinka, J., Masucci, M. G., & Dantuma, N. P. (2001). Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity. Antimicrobial Agents and Chemotherapy, 45, 2616–2622.

    PubMed  Google Scholar 

  172. Majerová-Uhlíková, T., Dantuma, N. P., Lindsten, K., Masucci, M. G., & Konvalinka, J. (2006). Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. Journal of Clinical Virology, 36, 50–59.

    PubMed  Google Scholar 

  173. Pines, J. (1997). Localization of cell cycle regulators by immunofluorescence. Methods in Enzymology, 283, 99–113.

    PubMed  Google Scholar 

  174. Pines, J. (1999). Four-dimensional control of the cell cycle. Nature Cell Biology, 1, E73–E79.

    PubMed  Google Scholar 

  175. Leonhardt, H., Rahn, H. P., Weinzierl, P., Sporbert, A., Cremer, T., Zink, D., et al. (2000). Dynamics of DNA replication factories in living cells. Journal of Cell Biology, 149, 271–280.

    PubMed  Google Scholar 

  176. Essers, J., Theil, A. F., Baldeyron, C., van Cappellen, W. A., Houtsmuller, A. B., Kanaar, R., et al. (2005). Nuclear dynamics of PCNA in DNA replication and repair. Molecular and Cellular Biology, 25, 9350–9359.

    PubMed  Google Scholar 

  177. Kisielewska, J., Lu, P., & Whitaker, M. (2005). GFP-PCNA as an S-phase marker in embryos during the first and subsequent cell cycles. Biology of the Cell, 97, 221–229.

    PubMed  Google Scholar 

  178. Easwaran, H. P., Leonhardt, H., & Cardoso, M. C. (2005). Cell cycle markers for live cell analyses. Cell Cycle, 4, 453–455.

    PubMed  Google Scholar 

  179. Jones, J. T., Myers, J. W., Ferrell, J. E., & Meyer, T. (2004). Probing the precision of the mitotic clock with a live-cell fluorescent biosensor. Nature Biotechnology, 22, 279–280.

    Google Scholar 

  180. Sakaue-Sawano, A., Kurokawa, H., Morimura, T., & Hanyu, A. (2008). Visualizing spatio-temporal dynamics of multicellular cell cycle progression. Cell, 132, 487–498.

    PubMed  Google Scholar 

  181. Thomas, N. (2003). Lighting the circle of life: Fluorescent sensors for covert surveillance of the cell cycle. Cell Cycle, 2, 545–549.

    PubMed  Google Scholar 

  182. Thomas, N., & Goodyer, I. D. (2003). Stealth sensors: Real-time monitoring of the cell cycle. Targets, 1, 26–33.

    Google Scholar 

  183. Lapenna, S., & Giordano, A. (2009). Cell cycle kinases as therapeutic targets for cancer. Nature Reviews Drug Discovery, 8, 547–566.

    PubMed  Google Scholar 

  184. Boutros, R., Lobjois, V., & Ducommun, B. (2007). Cdc25C phosphatases in cancer cells: Key players? Good targets? Nature Reviews Cancer 7, 495–507.

    PubMed  Google Scholar 

  185. Takai, N., Hamanaka, R., Yoshimatsu, J., & Miyakawa, I. (2005). Polo-like kinases (Plks) and cancer. Oncogene, 24, 287–291.

    PubMed  Google Scholar 

  186. Kurzawa, L., Pellerano, M., & Morris M. C. A new polypeptide biosensor of CDK-cyclins (in preparation).

  187. Hoffman, R. M. (2005). The multiple uses of fluorescent proteins to visualize cancer in vivo. Nature Reviews Cancer, 5, 796–806.

    PubMed  Google Scholar 

  188. Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews Cancer, 7, 737–749.

    PubMed  Google Scholar 

  189. Mather, S. (2009). Molecular imaging with bioconjugates in mouse models of cancer. Bioconjug. Chem., 20, 631–643.

    PubMed  Google Scholar 

  190. Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 101, 17867–17872.

    PubMed  Google Scholar 

  191. Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M., et al. (2009). Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine, 15, 104–109.

    PubMed  Google Scholar 

  192. Asanuma, D., Kobayashi, H., Nagano, T., & Urano, Y. (2009). Fluorescence imaging of tumors with “smart” pH-activatable targeted probes. Methods in Molecular Biology, 574, 47–62.

    PubMed  Google Scholar 

  193. Hama, Y., Urano, Y., Koyama, Y., Kamiya, M., Bernardo, M., Paik, R. S., et al. (2007). A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. Cancer Research, 67, 2791–2799.

    PubMed  Google Scholar 

  194. Wolff, M., Wiedenmann, J., Nienhaus, G. U., Valler, M., & Heilker, R. (2006). Novel fluorescent proteins for high-content screening. Drug Discovery Today, 11, 1054–1060.

    PubMed  Google Scholar 

  195. El-Deiry, W. S., Sigman, C. C., & Kelloff, G. J. (2006). Imaging and oncologic drug development. Journal of Clinical Oncology, 24, 3261–3273.

    PubMed  Google Scholar 

  196. Allen, M. D., DiPilato, L. M., Rahdar, M., Ren, Y. R., Chong, C., Liu, J. O., et al. (2006). Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chemical Biology, 1, 371–376.

    PubMed  Google Scholar 

  197. Tian, H., Ip, L., Luo, H., Chang, D. C., & Luo, K. Q. (2007). A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. British Journal of Pharmacology, 150, 321–334.

    PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to colleagues whose contributions were not cited due to reference and space limitations. I thank all past and present members of the Morris lab who have contributed to studies on mechanisms of cell cycle regulation and to the current development of peptide-based biosensors, as well as G. Divita for critical reading of the manuscript and fruitful discussions. I wish to acknowledge support from the CNRS and the Région Languedoc-Roussillon, the ARC (French Association for Research against Cancer) and the FRM (Fondation pour la Recherche Médicale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May C. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M.C. Fluorescent Biosensors of Intracellular Targets from Genetically Encoded Reporters to Modular Polypeptide Probes. Cell Biochem Biophys 56, 19–37 (2010). https://doi.org/10.1007/s12013-009-9070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9070-7

Keywords

Navigation