Cell Biochemistry and Biophysics

, Volume 55, Issue 2, pp 107–116 | Cite as

The Genetic Code—More Than Just a Table

Original Research

Abstract

The standard codon table is a primary tool for basic understanding of molecular biology. In the minds of many, the table’s orderly arrangement of bases and amino acids is synonymous with the true genetic code, i.e., the biological coding principle itself. However, developments in the field reveal a much more complex and interesting picture. In this article, we review the traditional codon table and its limitations in light of the true complexity of the genetic code. We suggest the codon table be brought up to date and, as a step, we present a novel superposition of the BLOSUM62 matrix and an allowed point mutation matrix. This superposition depicts an important aspect of the true genetic code—its ability to tolerate mutations and mistranslations.

Keywords

Genetic code Codon table Biological pedagogy Code optimization Point mutation BLOSUM62 PAM250 

Supplementary material

12013_2009_9060_MOESM1_ESM.pdf (2 mb)
(PDF 2056 kb)

References

  1. 1.
    Angellotti, M. C., Bhuiyan, S. B., Chen, G., & Wan, X.-F. (2007). CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Research, 35(Web Server issue), W132–W136.PubMedCrossRefGoogle Scholar
  2. 2.
    Baltimore, D. DNA is a reality beyond metaphor. Accessed May 20, 2009 from http://pr.caltech.edu/events/dna/dnabalt2.html.
  3. 3.
    Biro, J. C. B., Benyó, C., Sanson, A., Szlávecz, G., Fördös, G., Micsik, T., et al. (2003). A common periodic table of codons and amino acids. Biochemical and Biophysical Research Communications, 306(2), 408–415.PubMedCrossRefGoogle Scholar
  4. 4.
    Carter, C. W., Jr. (2008). Whence the genetic code? Thawing the ‘frozen accident’. Heredity, 100(4), 339–340.PubMedCrossRefGoogle Scholar
  5. 5.
    Church, G. (2009). Safeguarding biology. Seed, 20, 84–86. Accessed March 24, 2009 from http://seedmagazine.com/content/article/safeguarding_biology/.
  6. 6.
    Cornilescu, G., Delaglio, F., & Bax, A. (1999). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR, 13(3), 289–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Cortazzo, P., Cervenñansky, C., Marín, M., Reiss, C., Ehrlich, R., & Deana, A. (2002). Silent mutations affect in vivo protein folding in Escherichia coli. Biochemical and Biophysical Research Communications, 293(1), 537–541.PubMedCrossRefGoogle Scholar
  8. 8.
    Crick, F. H. (1968). The origin of the genetic code. Journal of Molecular Biology, 38(3), 367–379.PubMedCrossRefGoogle Scholar
  9. 9.
    Cristea, P. D. (2003). Large scale features in DNA genomic signals. Signal Processing, 83, 871–888.CrossRefGoogle Scholar
  10. 10.
    Daniels, L. A. (1996). Selenium metabolism and bioavailability. Biological Trace Element Research, 54(3), 185–199.PubMedCrossRefGoogle Scholar
  11. 11.
    Eddy, S. R. (2004). Where did the BLOSUM62 alignment score matrix come from? Nature Biotechnology, 22(8), 1035–1036.PubMedCrossRefGoogle Scholar
  12. 12.
    Frazer, I. (2005). Gene expression system based on codon translation efficiency. US patent application 20050196865 (continuation of International Patent Application No. PCT/AU2003/001200 filed September 15, 2003).Google Scholar
  13. 13.
    Freeland, S. J., & Hurst, L. D. (1998). The genetic code is one in a million. Journal of Molecular Evolution, 47(3), 238–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Freeland, S. J., Knight, R. D., Landweber, L. F., & Hurst, L. D. (2000). Early fixation of an optimal genetic code. Molecular Biology and Evolution, 17(4), 511–518.PubMedGoogle Scholar
  15. 15.
    Freeland, S. J., Wu, T., & Keulmann, N. (2003). The case for an error minimizing standard genetic code. Origins of Life and Evolution of the Biosphere, 33(4–5), 457–477.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujimoto, M. (1987). Tetrahederal codon stereo-table. US Patent 4702704.Google Scholar
  17. 17.
    Gentner, D. (1983). Mental models. Hillsdale, NJ: L. Erlbaum Associates.Google Scholar
  18. 18.
    Goodarzi, H., Katanforoush, A., Torabi, N., & Hamed, S. N. (2007). Solvent accessibility, residue charge and residue volume, the three ingredients of a robust amino acid substitution matrix. Journal of Theoretical Biology, 245(4), 715–725.PubMedCrossRefGoogle Scholar
  19. 19.
    Goodenbour, J. M., & Pan, T. (2006). Diversity of tRNA genes in eukaryotes. Nucleic Acids Research, 34(21), 6137–6146.PubMedCrossRefGoogle Scholar
  20. 20.
    Heider, J., Baron, C., & Böck, A. (1992). Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO Journal, 11(10), 3759–3766.PubMedGoogle Scholar
  21. 21.
    Heitzer, M., Eckert, A., Fuhrmann, M., & Griesbeck, C. (2007). Influence of codon bias on the expression of foreign genes in microalgae. Advances in Experimental Medicine and Biology, 616, 46–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915–10919.PubMedCrossRefGoogle Scholar
  23. 23.
    Howard, M. T., Aggarwal, G., Anderson, C. B., Khatri, S., Flanigan, K. M., & Atkins, J. F. (2005). Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO Journal, 24(8), 1596–1607.PubMedCrossRefGoogle Scholar
  24. 24.
    Itzkovitz, S., & Alon, U. (2007). The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Research, 17(4), 405–412.PubMedCrossRefGoogle Scholar
  25. 25.
    Jiménez-Montaño, M. A., de la Mora-Basáñez, C. R., & Pöschel, T. (1994). On the hypercube structure of the genetic code. In: H. A. Lim & C. A. Cantor (Eds.), Proceedings of 3rd International Conference on Bioinformatics and Genome Research.Google Scholar
  26. 26.
    Jiménez-Montaño, M. A. (2004). Applications of hyper genetic code to bioinformatics. Journal of Biological Systems, 12, 5–20. Accessed March 24, 2009 from Software: http://www.uv.mx/ajimenez/, manual: http://www.uv.mx/ajimenez/Manual/HGCodeManual.htm.
  27. 27.
    Keeling, P. J., & Doolittle, W. F. (1996). A non-canonical genetic code in an early diverging eukaryotic lineage. The EMBO Journal, 15(9), 2285–2290.PubMedGoogle Scholar
  28. 28.
    Koonin, E. V., & A. S. Novozhilov (2009). Origin and evolution of the genetic code: The universal enigma. IUBMB Life, 61(2), 99–111. Accessed March 24, 2009 from http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.4749v2.pdf, esp. Figs 2 and 4.
  29. 29.
    Liu, Z., Reches, M., Groisman, I., & Engelberg-Kulka, H. (1998). The nature of the minimal ‘selenocysteine insertion sequence’ (SECIS) in Escherichia coli. Nucleic Acids Research, 26(4), 896–902.PubMedCrossRefGoogle Scholar
  30. 30.
    Marth, J. D. (2008). A unified vision of the building blocks of life. Nature Cell Biology, 10(9), 1015–1016.PubMedCrossRefGoogle Scholar
  31. 31.
    Mathura, V. S., & Kolippakkam, D. (2005). APDbase: Amino acid physico-chemical properties database. Bioinformation, 1(1), 2–4.PubMedGoogle Scholar
  32. 32.
    Matthaei, H., & Nirenberg, M. W. (1961). The dependence of cell-free protein synthesis in E. coli upon RNA prepared from ribosomes. Biochemical and Biophysical Research Communications, 4, 404–408.PubMedCrossRefGoogle Scholar
  33. 33.
    Mazurs, E. G. (1974). Graphic representations of the periodic system during one hundred years. USA: University of Alabama Press.Google Scholar
  34. 34.
    Nakamura, M., & Sugiura, M. (2007). Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts. Plant Journal, 49(1), 128–134.PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Research, 28(1), 292.PubMedCrossRefGoogle Scholar
  36. 36.
    Nirenberg, M., & Leder, P. (1964). RNA codewords and protein synthesis. the effect of trinucleotides upon the binding of sRNA to ribosomes. Science, 145, 1399–1407.PubMedCrossRefGoogle Scholar
  37. 37.
    Nirenberg, M. W., & Matthaei, J. H. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 47, 1588–1602.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillips, R., Kondev, J., & Theriot, J. (2008). Physical biology of the cell. New York: Garland Science.Google Scholar
  39. 39.
    Rechavi, O., & Kloog, Y. (2009). Prion and anti-codon usage: Does infectious PrP alter tRNA abundance to induce misfolding of PrP? Medical Hypotheses, 72(2), 193–195.PubMedCrossRefGoogle Scholar
  40. 40.
    Sandman, K. E., Tardiff, D. F., Neely, L. A., & Noren, C. J. (2003). Revised Escherichia coli selenocysteine insertion requirements determined by in vivo screening of combinatorial libraries of SECIS variants. Nucleic Acids Research, 31(8), 2234–2241.PubMedCrossRefGoogle Scholar
  41. 41.
    Santos, M. A., Ueda, T., Watanabe, K., & Tuite, M. F. (1997). The non-standard genetic code of Candida spp.: An evolving genetic code or a novel mechanism for adaptation? Molecular Microbiology, 26(3), 423–431.PubMedCrossRefGoogle Scholar
  42. 42.
    Santos, M. A. S., & Tuite, M. F. (2004). Extant variations in the genetic code. Chapter 12 in The genetic code and the origin of life. New York, NY: Kluwer Academic/Plenum.Google Scholar
  43. 43.
    Shen, Y., Lange, O., Delaglio, F., Rossi, P., Aramini, J. M., Liu, G., et al. (2008). Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences of the United States of America, 105(12), 4685–4690.PubMedCrossRefGoogle Scholar
  44. 44.
    Stadtman, T. C. (1991). Biosynthesis and function of selenocysteine-containing enzymes. Journal of Biological Chemistry, 266(25), 16257–16260.PubMedGoogle Scholar
  45. 45.
    Stoltzfus, A., & Yampolsky, L. Y. (2007). Amino acid exchangeability and the adaptive code hypothesis. Journal of Molecular Evolution, 65(4), 456–462.PubMedCrossRefGoogle Scholar
  46. 46.
    Strauss, S. (2009). We need a satisfactory metaphor for DNA. New Scientist, 2696(Feb 23), 22. Accessed March 24, 2009 from http://www.newscientist.com/issue/2696. Summarizes Metaphor contests and contested metaphors: from webs spinning spiders to barcodes on DNA. Chapter in B. Nerlich, R. Elliott & B. Larson, eds., Communicating Biological Sciences, Ashgate, UK (ISBN 978-0-7546-7633-1).
  47. 47.
    Turanov, A. A., Lobanov, A. V., Fomenko, D. E., Morrison, H. G., Sogin, M. L., Klobutcher, L. A., et al. (2009). Genetic code supports targeted insertion of two amino acids by one codon. Science, 323(5911), 259–261.PubMedCrossRefGoogle Scholar
  48. 48.
    Walczak, R., Carbon, P., & Krol, A. (1998). An essential non-Watson–Crick base pair motif in 3′ UTR to mediate selenoprotein translation. RNA, 4(1), 74–84.PubMedGoogle Scholar
  49. 49.
    White, M. (2007). The G-Ball, a new icon for codon symmetry and the genetic code. Accessed March 24, 2009 from http://arxiv.org/abs/q-bio/0702056. Also see http://www.codefun.com and http://www.codefun.com/Index_Books_Rafiki.htm.
  50. 50.
    Wilhelm, T., & Nikolajewa, S. (2004). A new classification scheme of the genetic code. Journal of Molecular Evolution, 59(5), 598–605.PubMedCrossRefGoogle Scholar
  51. 51.
    Woese, C. R., Dugre, D. H., Dugre, S. A., Kondo, M., & Saxinger, W. C. (1966). On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symposia on Quantitative Biology, 31, 723–736.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • D. Berleant
    • 1
  • M. White
    • 2
  • E. Pierce
    • 1
  • E. Tudoreanu
    • 1
  • A. Boeszoermenyi
    • 3
  • Y. Shtridelman
    • 4
  • J. C. Macosko
    • 4
  1. 1.Department of Information ScienceUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Rafiki Inc.BloomingtonUSA
  3. 3.Karl-Franzens-Universität GrazGrazAustria
  4. 4.Department of PhysicsWake Forest UniversityWinston-SalemUSA

Personalised recommendations