Skip to main content
Log in

Hepatocellular Carcinoma Cells Deteriorate the Biophysical Properties of Dendritic Cells

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are potent antigen-presenting cells and induce antigen-specific immune responses in the organism. The dysfunction of DCs has been implicated in tumor-bearing host. In order to elucidate the effects of tumor microenvironment on the functions of DCs from interdisciplinary aspects, we characterized the biophysical properties of DCs co-cultured with hepatocellular carcinoma cells (HCC). The results showed that the biophysical characteristics of immature and mature DCs were severely impaired by HCC compared with those under normal conditions, including the increased osmotic fragilities, decreased cell membrane fluidities, increased membrane viscoelastic properties, dysfunction and increased expression of cytoskeleton protein F-actin, as well as the deteriorated transendothelium migration. The impaired biophysical properties of DCs may be one of many aspects of the immune escape mechanisms of tumors. These results are clinically and instructionally significant with regard to how to enhance efficiency of the anti-tumor therapy based on DCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Steinman, R. M. (1991). The dendritic cell system and its role in immunogenicity. Annual review of immunology, 9, 271–296.

    Article  PubMed  CAS  Google Scholar 

  2. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., & Alber, G. (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. The Journal of experimental medicine, 184, 747–752.

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau, J., & Palucka, A. K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nature Reviews Immunology, 5, 296–306.

    Article  PubMed  CAS  Google Scholar 

  4. Gabriel, A. R., Gabrilovich, D., & Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annual review of immunology, 25, 267–296.

    Article  Google Scholar 

  5. Gabrilovich, D. I., Patterson, S., Harvey, J. J., Woods, G. M., Elsley, W., & Knight, S. C. (1995). Defects in the function of dendritic cells in murine retroviral infection. Advances in experimental medicine and biology, 378, 469–472.

    PubMed  CAS  Google Scholar 

  6. Thurnher, M., Zelle-Rieser, C., Ramoner, R., Bartsch, G., & Höltl, L. (2001). The disabled dendritic cell. FASEB-Journal, 15, 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  7. Ninomiya, T., Akbar, S. M., Masumoto, T., Horiike, N., & Onji, M. (1999). Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. Journal of Hepatology, 31, 323–331.

    Article  PubMed  CAS  Google Scholar 

  8. Thomas, S., Alan, R. S., John, A. H., Bernard, F. C., Jens, A., Frederick, W., et al. (1999). E. In vivo description of dendritic cells in human renal cell carcinoma. Journal of Urology, 162, 567–575.

    Article  Google Scholar 

  9. Federica, B., Stephanie, H., Marita, W., Sandra, R., Luc, F., Michel, P., et al. (2004). Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cells priming. Science, 305, 1150–1153.

    Article  Google Scholar 

  10. Thorsten, R. M., Sarah, E. H., & Ulrich, H. A. (2004). T-cell priming by dendritic cells in lymph nodes occurs in different phases. Nature, 427, 154–159.

    Article  Google Scholar 

  11. Sabine, S., Jérôme, D., Tilmann, M. B., & Ronald, N. G. (2002). Dynamic imaging of T-Dendritic cells interaction in lymph nodes. Science, 296, 1873–1876.

    Article  Google Scholar 

  12. Cavanagh, L. L., & Weninger, W. (2008). Dendritic cell behaviour in vivo: Lessons learned from intravital two-photon microscopy. Immunology and Cell Biology, 86, 428–438.

    Article  PubMed  CAS  Google Scholar 

  13. Alvarez, D., Vollmann, E. H., & von Andrian, U. H. (2008). Mechanisms and consequences of dendritic cell, migration. Immunity, 29, 325–341.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang, Y. H., Zeng, Z., Sun, D. G., Ka, W. B., & Wen, Z. Y. (2005). Adhesion of monocyte-derived dendritic cells to human umbilical vein endothelial cells in flow field decreases upon maturation. Clinical hemorheology and microcirculation, 33, 261–268.

    Google Scholar 

  15. Zeng, Z., Liu, X., Jiang, Y. H., Wang, G. T., Zhan, J., Guo, J., et al. (2006). Microhemorheological studies on the differentiation of human CD14+ monocytes into dendritic cells. Cell Biochemistry and Biophysics, 45, 18–28.

    Article  Google Scholar 

  16. Chen, B. G., Shi, Y. J., Smith, J. D., Choi, D., James, D. G., & James, J. M. (1998). The role of tumor necrosis factors a in modulation the quantity of peripheral blood derived, cytokine-driven human dendritic cells and its role in presenting soluble antigens to CD4 + T cells in vitro. Blood, 91, 4652–4661.

    PubMed  CAS  Google Scholar 

  17. Jagannathan, R., Ahmad, S., Ziad, H., Beny, C., Jacob, G., Nili, G., et al. (2001). Application of FTIR microscopy for the characterization of malignancy: H-ras transfected murine fibroblasts as an example. Journal of biochemical and biophysical methods, 50, 33–42.

    Article  Google Scholar 

  18. Damon, C. S., Karla, J. D., Edward, J. C., Aaron, C. H., & David, R. S. (2000). Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motility and the Cytoskeleton, 46, 200–221.

    Article  Google Scholar 

  19. Siobhan, B., Samantha, J. H., Joanna, B., Kwee, L. Y., Gareth, E. J., & Adrian, J. T. (2004). Maturation of DC is associated with changes in motile characteristics and adherence. Cell Motility and the Cytoskeleton, 57, 118–132.

    Article  Google Scholar 

  20. Gu, L., Jiang, Y. H., Wang, Y., Yao, W. J., Sun, D. G., Ka, W. B., et al. (2005). TFAR19 gene changes microhemorheological behavior of murine erythroleukemia cells. Cell Biochemistry and Biophysics, 32, 19–30.

    Google Scholar 

  21. Yao, W. J., Gu, L., Sun, D. G., Ka, W. B., Wen, Z. Y., & Chien, S. (2003). Wild type p53 gene causes reorganization of cytoskeleton and therefore the impaired deformability and difficult migration of murine erythroleukemia cells. Cell motility and the cytoskeleton, 56, 1–12.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, K., Li, D., Yao, W. J., Wang, X. J., Wei, X. C., Gao, J., et al. (2004). Influence of TRAIL gene on microhemorheological cell line Jurkat. Cell Research, 5, 161–168.

    Article  Google Scholar 

  23. Zou, W. P. (2005). Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nature Reviews Cancer, 5, 263–274.

    Article  PubMed  CAS  Google Scholar 

  24. Afsaneh, S., & Jörg, Z. (2005). Dendritic cells: limited potential in immunotherapy. The International Journal of Biochemistry & Cell Biology, 37, 241–245.

    Article  Google Scholar 

  25. Frank, O. N., Arpad, F., & Curdin, C. (2005). Dendritic-cell-based therapeutic vaccination against cancer. Current Opinion in Immunology, 17, 163–169.

    Article  Google Scholar 

  26. Makarenkova, V. P., Shurin, G. V., Tourkova, I. L., Balkir, L., Pirtskhalaishvili, G., Perez, L., et al. (2003). Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. Journal of Neuroimmunology, 145, 55–67.

    Article  PubMed  CAS  Google Scholar 

  27. Ohno, T., Hirashima, N., Orito, E., Hasegawa, I., Fujiwara, K., Itoh, K., et al. (2007). Impaired cytotoxic T lymphocyte inductivity by dendritic cells derived from patients with hepatitis C virus-positive hepatocellular carcinoma. Hepatology Research, 37, 276–285.

    Article  PubMed  CAS  Google Scholar 

  28. Kakumu, S., Ito, S., Ishikawa, T., Mita, Y., Tagaya, T., Fukuzawa, Y., et al. (2000). Decreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infection. Journal of Gastroenterology and Hepatology, 15, 431–436.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, W. C., Wang, H. C., Jeng, L. B., Chiang, Y. J., Lia, C. R., Huang, P. F., et al. (2001). Effective treatment of small murine hepatocellular carcinoma by dendritic cells. Hepatology, 34, 896–905.

    Article  PubMed  CAS  Google Scholar 

  30. Le Gal, J. M., Morjani, H., Fardel, O., Guillouzo, A., & Manfait, M. (1994). Conformational changes in membrane proteins of multidrug-resistant K562 and primary rat hepatocyte cultures as studied by FTIR. Anticancer Research, 14, 1541–1548.

    PubMed  CAS  Google Scholar 

  31. Garrity, T., Pandit, R., Wright, M. A., Benefield, J., Keni, S., & Young, M. R. (1997). Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. International Journal of Cancer, 73, 663–668.

    Article  CAS  Google Scholar 

  32. Ninomiya, T., Akbar, S. M. F., Masumoto, T., Horiike, N., & Onji, M. (1999). Dendritic cells with immature phenoltype and defective function in the peripheral blood from patients with hepatocellular carcinoma. Journal of Hepatology, 31, 323–331.

    Article  PubMed  CAS  Google Scholar 

  33. Tourkova, I. L., Yurkovetsky, Z. R., Shurin, M. R., & Shurin, G. V. (2001). Mechanisms of dendritic cell-induced T cell proliferation in the primary MLR assay. Immunology letters, 78, 75–82.

    Article  PubMed  CAS  Google Scholar 

  34. Sozzani, S. (2005). Dendritic cell trafficking: More than just chemokines. Cytokine & Growth Factors Reviews, 16, 581–592.

    Article  CAS  Google Scholar 

  35. Scott, N. B., & Gary, M. H. (2002). Dendritic cells: Making progress with tumour regression? Immunology and Cell Biology, 80, 520–530.

    Article  Google Scholar 

  36. Gwendalyn, J. R., Veronique, A., & Melody, A. S. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 5, 617–628.

    Article  Google Scholar 

  37. Kendrick, C. B., & Melody, A. S. (2003). Interstitial flow as a guide for lymphangiogenesis. Circulation Research, 92, 801–808.

    Article  Google Scholar 

  38. Melody, A. S. (2003). Signaling in morphogenesis: Transport cues in morphogenesis. Current opinion in biotechnology, 14, 547–550.

    Article  Google Scholar 

  39. Steinman, R. M., & Jacques, B. (2007). Taking dendritic cells into medicine. Nature, 449, 419–426.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundations of China (Grant Nos. 10572007 and 30770532), the Scientific and Technological Funding, and The Governor Funding (No. 2009038) of Guizhou Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyao Wen or Shu Chien.

Additional information

Zhu Zeng and Weijuan Yao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Yao, W., Xu, X. et al. Hepatocellular Carcinoma Cells Deteriorate the Biophysical Properties of Dendritic Cells. Cell Biochem Biophys 55, 33–43 (2009). https://doi.org/10.1007/s12013-009-9055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9055-6

Keywords

Navigation