Cell Biochemistry and Biophysics

, Volume 55, Issue 1, pp 1–23 | Cite as

Antioxidant Activity of Sulfur and Selenium: A Review of Reactive Oxygen Species Scavenging, Glutathione Peroxidase, and Metal-Binding Antioxidant Mechanisms

Review Paper


It is well known that oxidation caused by reactive oxygen species (ROS) is a major cause of cellular damage and death and has been implicated in cancer, neurodegenerative, and cardiovascular diseases. Small-molecule antioxidants containing sulfur and selenium can ameliorate oxidative damage, and cells employ multiple antioxidant mechanisms to prevent this cellular damage. However, current research has focused mainly on clinical, epidemiological, and in vivo studies with little emphasis on the antioxidant mechanisms responsible for observed sulfur and selenium antioxidant activities. In addition, the antioxidant properties of sulfur compounds are commonly compared to selenium antioxidant properties; however, sulfur and selenium antioxidant activities can be quite distinct, with each utilizing different antioxidant mechanisms to prevent oxidative cellular damage. In the present review, we discuss the antioxidant activities of sulfur and selenium compounds, focusing on several antioxidant mechanisms, including ROS scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Findings of several recent clinical, epidemiological, and in vivo studies highlight the need for future studies that specifically focus on the chemical mechanisms of sulfur and selenium antioxidant behavior.


Antioxidant mechanism Sulfur antioxidants Selenium antioxidants Glutathione peroxidase Reactive oxygen species scavenging Metal binding 



Reactive oxygen species


Glutathione peroxidase


Hydroxyl radical


Hydrogen peroxide


  1. 1.
    Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research, 571, 3–17.PubMedGoogle Scholar
  3. 3.
    Lloyd, D. R., Philips, D. H., & Carmichael, P. L. (1997). Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chemical Research in Toxicology, 10, 393–400.PubMedCrossRefGoogle Scholar
  4. 4.
    de Flora, S., & Izzotti, A. (2007). Mutagenesis and cardiovascular disease: Molecular mechanisms, risk factors, and protective factors. Mutation Research, 621, 5–17.PubMedGoogle Scholar
  5. 5.
    Brewer, G. J. (2007). Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Experimental Biology and Medicine, 232, 323–335.PubMedGoogle Scholar
  6. 6.
    Angel, I., Bar, A., Horovitz, T., Taler, G., Krakovsky, M., Resnitsky, D., et al. (2002). Metal ion chelation in neurodegenerative disorders. Drug Development and Research, 56, 300–309.CrossRefGoogle Scholar
  7. 7.
    Perry, G., Cash, A. D., Srinivas, R., & Smith, M. A. (2002). Metals and oxidative homeostasis in Alzheimer’s disease. Drug Development and Research, 56, 293–299.CrossRefGoogle Scholar
  8. 8.
    Stohs, S., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18, 321–336.PubMedCrossRefGoogle Scholar
  9. 9.
    Park, S., & Imlay, J. A. (2003). High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. Journal of Bacteriology, 185, 1942–1950.PubMedCrossRefGoogle Scholar
  10. 10.
    Seifried, H. E., Anderson, D. E., Fisher, E. I., & Milner, J. A. (2007). A review of the interaction among dietary antioxidants and reactive oxygen species. Journal of Nutritional Biochemistry, 18, 567–579.PubMedCrossRefGoogle Scholar
  11. 11.
    Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compound. Trends in Plant Science, 2, 152–159.CrossRefGoogle Scholar
  12. 12.
    Ramoutar, R. R., & Brumaghim, J. L. (2007). Effects of inorganic selenium compounds on oxidative DNA damage. Journal of Inorganic Biochemistry, 101, 1028–1035.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramoutar, R. R., & Brumaghim, J. L. (2007). Investigating the antioxidant properties of oxo-sulfur compounds on metal-mediated DNA damage. Main Group Chemistry, 6, 143–153.CrossRefGoogle Scholar
  14. 14.
    Perron, N. R., Hodges, J. N., Jenkins, M., & Brumaghim, J. L. (2008). Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorganic Chemistry, 47, 6153–6161.PubMedCrossRefGoogle Scholar
  15. 15.
    Battin, E. E., Perron, N. R., & Brumaghim, J. L. (2006). The central role of metal coordination in selenium antioxidant activity. Inorganic Chemistry, 45, 499–501.PubMedCrossRefGoogle Scholar
  16. 16.
    Battin, E. E., & Brumaghim, J. L. (2008). Metal specificity in DNA damage prevention by sulfur antioxidants. Journal of Inorganic Biochemistry, 102, 3036–3042.CrossRefGoogle Scholar
  17. 17.
    Mates, J. M., Perez-Gomez, C., & Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32, 595–603.PubMedCrossRefGoogle Scholar
  18. 18.
    Burton, G. W. (1990). Vitamin E: Antioxidant activity, biokinetics, and bioavailability. Annual Review of Nutrition, 10, 357–382.PubMedCrossRefGoogle Scholar
  19. 19.
    Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., et al. (2003). Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22, 18–35.PubMedGoogle Scholar
  20. 20.
    Ames, B. N. (2001). DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research, 475, 7–20.PubMedGoogle Scholar
  21. 21.
    Cui, Y., Morgenstern, H., Greenland, S., Tashkin, D. P., Mao, J. T., Cai, L., et al. (2008). Dietary flavonoid intake and lung cancer: A population-based case–control study. Cancer, 112, 2241–2248.PubMedCrossRefGoogle Scholar
  22. 22.
    Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., et al. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. American Journal of Clinical Nutrition, 87, 323–331.PubMedGoogle Scholar
  23. 23.
    Carmeli, E., Bachar, A., Barchad, S., Morad, M., & Merrick, J. (2008). Antioxidant status in serum of persons with intellectual disability and hypothyroidism: A pilot study. Research on Developmental Disabilities, 29, 431–438.CrossRefGoogle Scholar
  24. 24.
    Resende, R., Moreira, P. I., Proenca, T., Deshpande, A., Busciglio, J., Pereira, C., et al. (2008). Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radical Biology and Medicine, 44, 2051–2057.PubMedCrossRefGoogle Scholar
  25. 25.
    Chowdhury, R., Dutta, A., Chaudhuri, S. R., Sharma, N., Giri, A. K., & Chaudhuri, K. (2008). In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food and Chemical Toxicology, 46, 740–751.PubMedCrossRefGoogle Scholar
  26. 26.
    Seyedrezazadeh, E., Ostadrahimi, A., Mahboob, S., Assadi, Y., Ghaemmagami, J., & Pourmogaddam, M. (2008). Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology, 13, 294–298.PubMedCrossRefGoogle Scholar
  27. 27.
    Mugesh, G., & Singh, H. B. (2000). Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chemical Society Reviews, 29, 347–357.CrossRefGoogle Scholar
  28. 28.
    Collins, C. A., Fry, F. H., Holme, A. L., Yiakouvaki, A., Al-Qenaei, A., Pourzand, C., et al. (2005). Toward multifunctional antioxidants: Synthesis, electrochemistry, in vitro and cell culture evaluation of compounds with ligand/catalytic properties. Organic and Biomolecular Chemistry, 3, 1541–1546.PubMedCrossRefGoogle Scholar
  29. 29.
    Halliwell, B. H., & Cross, C. E. (1994). Oxygen-derived species: Their relation to human disease and environmental stress. Environmental Health Perspectives, 102, 5–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Halliwell, B. H., & Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemistry Journal, 219, 1–14.Google Scholar
  31. 31.
    Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology Lung Cellular and Molecular Physiology, 279, L1005–L1028.PubMedGoogle Scholar
  32. 32.
    Goetz, M. E., & Luch, A. (2008). Reactive species: A cell damaging rout assisting to chemical carcinogens. Cancer Letters, 266, 73–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Benov, L. (2001). How superoxide radical damages the cell. Protoplasma, 217, 33–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Fridovich, I. (1983). Superoxide radical: An endogenous toxicant. Annual Review of Pharmacology and Toxicology, 23, 239–257.PubMedCrossRefGoogle Scholar
  35. 35.
    Ambrosone, C. B., Freudenheim, J. L., Thompson, P. A., Bowman, E., Vena, J. E., Marshall, J. R., et al. (1999). Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Research, 59, 602–606.PubMedGoogle Scholar
  36. 36.
    Afonso, V., Champy, R., Mitrovic, D., Collin, P., & Lomri, A. (2007). Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, 74, 324–329.PubMedCrossRefGoogle Scholar
  37. 37.
    Collin, B., Busseuil, D., Zeller, M., Perrin, C., Barthez, O., Duvillard, L., et al. (2007). Increased superoxide anion production is associated with early atherosclerosis and cardiovascular dysfunctions in a rabbit model. Molecular and Cellular Biochemistry, 294, 225–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Waris, G., & Ahsan, H. (2006). Reactive oxygen species: Role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, 5, 1–8.CrossRefGoogle Scholar
  39. 39.
    Lesko, S. A., Lorentzen, R. J., & Ts’o, P. O. P. (1980). Role of superoxide in deoxyribonucleic acid strand scission. Biochemistry, 19, 3023–3028.PubMedCrossRefGoogle Scholar
  40. 40.
    Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Science USA, 93, 13635–13640.CrossRefGoogle Scholar
  41. 41.
    Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutases multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine, 33, 337–349.PubMedCrossRefGoogle Scholar
  42. 42.
    Keller, J. N., Kindy, M. S., Holtsber, F. W., St. Clair, D. K., Yen, H.-C., Germeyer, A., et al. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. Journal of Neuroscience, 18, 687–697.PubMedGoogle Scholar
  43. 43.
    Wang, P., Chen, H., Qin, H., Sankarapandi, S., Becher, M. W., Wong, P. C., & Zweier, J. L. (1998). Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proceedings of the National Academy of Science USA, 95, 4556–4560.CrossRefGoogle Scholar
  44. 44.
    Wheeler, M. D., Nakagami, M., Bradford, B. U., Uesugi, T., Mason, R. P., Connor, H. D., et al. (2001). Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. Journal of Biological Chemistry, 276, 36664–36672.PubMedCrossRefGoogle Scholar
  45. 45.
    Potter, S. Z., & Valentine, J. S. (2003). The perplexing role of copper–zinc superoxide dismutase in amyotrophic lateral sclerosis (Lou Gehrig’s disease). Journal of Biological Inorganic Chemistry, 8, 373–380.PubMedGoogle Scholar
  46. 46.
    Tamai, M., Furuta, H., Kawashima, H., Doi, A., Hamanishi, T., Shimomura, H., et al. (2006). Extracellular superoxide dismutase gene polymorphism is associated with insulin resistance and the susceptibility to type 2 diabetes. Diabetes Research and Clinical Practice, 71, 140–145.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, F., Calingasan, N. Y., Yu, F., Mauck, W. M., Toidze, M., Almeida, C. G., et al. (2004). Increased plaque burden in brains of APP mutant Mn SOD heterozygous knockout mice. Journal of Neurochemistry, 89, 1308–1312.PubMedCrossRefGoogle Scholar
  48. 48.
    Wheatley-Price, P., Asomaning, K., Reid, A., Zhai, R., Su, L., Zhou, W., et al. (2008). Myeloperoxidase and superoxide dismutase polymorphisms are associated with an increased risk of developing pancreatic adenocarcinoma. Cancer, 112, 1037–1042.PubMedCrossRefGoogle Scholar
  49. 49.
    Ergen, H. A., Narter, F., Timirci, O., & Isbir, T. (2007). Effects of manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Anticancer Research, 27, 1227–1230.PubMedGoogle Scholar
  50. 50.
    Kowald, A., Lehrach, H., & Klipp, E. (2006). Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase. Journal of Theoretical Biology, 238, 828–840.PubMedCrossRefGoogle Scholar
  51. 51.
    Noda, Y., Anzai, K., Mori, A., Kohno, M., Shinmei, M., & Packer, L. (1997). Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochemistry and Molecular Biology International, 42, 35–44.PubMedGoogle Scholar
  52. 52.
    White, C. R., Brock, T. A., Chang, L.-Y., Crapo, J., Briscoe, P., Ku, D., et al. (1994). Superoxide and peroxynitrite in atherosclerosis. Proceedings of the National Academy of Science USA, 91, 1044–1048.CrossRefGoogle Scholar
  53. 53.
    Roussyn, I., Briviba, K., Masumoto, H., & Sies, H. (1996). Selenium-containing compounds protect DNA from single-single breaks caused by peroxynitrite. Archives of Biochemistry and Biophysics, 330, 216–218.PubMedCrossRefGoogle Scholar
  54. 54.
    Klotz, L.-O., & Sies, H. (2003). Defenses against peroxynitrite: Selenocompounds and flavonoids. Toxicology Letters, 140, 125–132.PubMedCrossRefGoogle Scholar
  55. 55.
    Bergendi, L., Benes, L., Durackova, Z., & Ferencik, M. (1999). Chemistry, physiology, and pathology of free radicals. Life Sciences, 65, 1865–1874.PubMedCrossRefGoogle Scholar
  56. 56.
    Davies, M. J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochemistry and Biophysics Research Communications, 305, 761–770.CrossRefGoogle Scholar
  57. 57.
    Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54, 176–186.PubMedCrossRefGoogle Scholar
  58. 58.
    Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2009). Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers in Medical Science, 24, 259–268.PubMedCrossRefGoogle Scholar
  59. 59.
    Juarranz, A., Jaen, P., Sanz-Rodriguez, F., Cuevas, J., & Gonzalez, S. (2008). Photodynamic therapy of cancer: Basic principles, and applications. Cinical and Translational Oncology, 10, 148–154.CrossRefGoogle Scholar
  60. 60.
    Tan, D.-X., Manchester, L. C., Reiter, R. J., Plummer, B. F., Hardies, L. J., Weintraub, S. T., et al. (1998). A novel melatonin metabolite, cyclic 3-hydroxymelatonin: A biomarker of melatonin interaction with hydroxyl radicals. Biochemistry and Biophysics Research Communications, 253, 614–620.CrossRefGoogle Scholar
  61. 61.
    Halliwell, B., & Gutteridge, J. M. (1986). Oxygen lice radicals unit iron relation to biology and medicine: Some problems and concepts. Archives of Biochemistry and Biophysics, 246, 501–514.PubMedCrossRefGoogle Scholar
  62. 62.
    Bar-Or, D., Thomas, G. W., Rael, L. T., Lau, E. P., & Winkler, J. V. (2001). Asp-Ala-His-Lys (DAHK) inhibits copper-induced oxidative DNA double strand breaks and telomere shortening. Biochemistry and Biophysics Research Communications, 282, 356–360.CrossRefGoogle Scholar
  63. 63.
    Lippard, S. J., & Berg, J. M. (1994). Principles of Bioinorganic Chemistry (pp. 7–8). Mill Valley: University Science Books.Google Scholar
  64. 64.
    Beutler, E. (2007). Iron storage disease: Facts, fiction, and progress. Blood Cells, Molecules, and Diseases, 39, 140–147.PubMedCrossRefGoogle Scholar
  65. 65.
    Swaminathan, S., Fonseca, V. A., Alam, M. G., & Shah, S. V. (2007). The role of iron in diabetes and its complications. Diabetes Care, 30, 1926–1933.PubMedCrossRefGoogle Scholar
  66. 66.
    Schumman, K., Classen, H. G., Dieter, H. H., Konig, J., Multhaup, G., Rukgauer, M., et al. (2002). Hohenheim consensus workshop: Copper. European Journal of Clinical Nutrition, 56, 469–483.CrossRefGoogle Scholar
  67. 67.
    Reddy, M. B., & Clark, L. C. (2004). Iron, oxidative stress, and disease risk. Nutrition Reviews, 62, 120–124.PubMedCrossRefGoogle Scholar
  68. 68.
    Cooper, G. J. S., Chan, Y.-K., Dissanayake, A. M., Leahy, F. E., Koegh, G. F., Frampton, C. M., et al. (2005). Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: Quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes, 54, 1468–1476.PubMedCrossRefGoogle Scholar
  69. 69.
    Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson’s disease. Lancet, 369, 397–408.PubMedCrossRefGoogle Scholar
  70. 70.
    Leone, N., Courbon, D., Ducimetiere, P., & Zureik, M. (2006). Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology, 17, 308–314.PubMedCrossRefGoogle Scholar
  71. 71.
    Trachootham, D., Lu, W., Ogasawara, M. A., Rivera-Del Valle, N., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants and Redox Signaling, 10, 1343–1374.PubMedCrossRefGoogle Scholar
  72. 72.
    Meneghini, R. (1997). Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biology and Medicine, 23, 783–792.PubMedCrossRefGoogle Scholar
  73. 73.
    Giles, N. M., Watts, A. B., Giles, G. I., Fry, F. H., Littlechild, J. A., & Jacob, C. (2003). Metal and redox modulation of cysteine protein function. Chemistry & Biology, 10, 667–693.CrossRefGoogle Scholar
  74. 74.
    Mzhel’skaya, T. I. (2000). Biological function of ceruloplasmin and their deficiency caused by mutation in genes regulating copper and iron metabolism. Bulletin of Experimental Biology and Medicine, 130, 719–727.PubMedGoogle Scholar
  75. 75.
    Brumaghim, J. L., Li, Y., Henle, E., & Linn, S. (2003). Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: Changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). Journal of Biological Chemistry, 278, 42495–42504.PubMedCrossRefGoogle Scholar
  76. 76.
    Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166, 519–527.PubMedGoogle Scholar
  77. 77.
    Imlay, J. A., & Linn, S. (1987). Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 169, 2967–2976.PubMedGoogle Scholar
  78. 78.
    Mello-Filho, A. C., & Meneghini, R. (1991). Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutation Research, 251, 109–113.PubMedGoogle Scholar
  79. 79.
    Zhu, X., Su, B., Wang, X., Smith, M. A., & Perry, G. (2007). Causes of oxidative stress in Alzheimer disease. Cellular and Molecular Life Sciences, 64, 2202–2210.PubMedCrossRefGoogle Scholar
  80. 80.
    Ando, K., Ogawa, K., Misaki, S., & Kikugawa, K. (2002). Increased release of free Fe ions in human erythrocytes during aging and circulation. Free Radical Research, 36, 1079–1084.PubMedCrossRefGoogle Scholar
  81. 81.
    Berg, D., & Hochstrasser, H. (2006). Iron metabolism in Parkinsonian syndromes. Movement Disorders, 21, 1299–1310.PubMedCrossRefGoogle Scholar
  82. 82.
    Weinberg, E. D. (1999). Iron loading and disease surveillance. Emerging Infectious Diseases, 5, 346–352.PubMedCrossRefGoogle Scholar
  83. 83.
    Woodmansee, A. N., & Imlay, J. A. (2002). Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods in Enzymology, 349, 3–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Messner, D. J., & Kowdley, K. V. (2008). Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron. BMC Gastroenterology, 8, 1–10.CrossRefGoogle Scholar
  85. 85.
    Shackelford, R. E., Manuszak, R. P., Johnson, C. D., Hellrung, D. J., Link, C. J., & Wang, S. (2004). Iron chelators increase the resistance of Ataxia telangeictasia cells to oxidative stress. DNA Repair, 3, 1263–1272.PubMedCrossRefGoogle Scholar
  86. 86.
    Prus, E., & Fibach, E. (2008). The labile iron pool in human erythroid cells. British Journal of Haematology, 142, 301–307.CrossRefPubMedGoogle Scholar
  87. 87.
    Lee, D.-H., Liu, D. Y., Jacobs, D. R., Jr., Shin, H.-R., Song, K., Lee, I.-K., et al. (2006). Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care, 29, 1090–1095.PubMedCrossRefGoogle Scholar
  88. 88.
    Tuomainen, T.-P., Loft, S., Nyyssonen, K., Punnonen, K., Salonen, J. T., & Poulsen, H. E. (2007). Body iron is a contributor to oxidative damage of DNA. Free Radical Research, 41, 324–328.PubMedCrossRefGoogle Scholar
  89. 89.
    Evans, P. J., Smith, C., Mitchinson, M. J., & Halliwell, B. (1995). Metal ion release from mechanically-disrupted human arterial wall: Implications for the development of atherosclerosis. Free Radical Research, 23, 465–469.PubMedCrossRefGoogle Scholar
  90. 90.
    Gutteridge, J. M. C. (1986). Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Letters, 201, 291–295.PubMedCrossRefGoogle Scholar
  91. 91.
    White, B. C., Sullivan, J. M., DeGracia, D. J., O’Neil, B. J., Neumar, R. W., Grossman, L. I., et al. (2000). Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. Journal of Neurological Science, 179, 1–33.CrossRefGoogle Scholar
  92. 92.
    Brandolini, V., Tedeschi, P., Capece, A., Maietti, A., Mazzotta, D., Salzano, G., et al. (2002). Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology & Biotechnology, 18, 499–503.CrossRefGoogle Scholar
  93. 93.
    Que, E. L., Domaille, D. W., & Chang, C. J. (2008). Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chemical Reviews, 108, 1517–1549.PubMedCrossRefGoogle Scholar
  94. 94.
    Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.PubMedCrossRefGoogle Scholar
  95. 95.
    Yang, L., McRae, R., Henary, M. M., Patel, R., Lai, B., Vogt, S., et al. (2005). Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proceedings of the National Academy of Science USA, 102, 11179–11184.CrossRefGoogle Scholar
  96. 96.
    Miller, E. W., Zeng, L., Domaille, D. W., & Chang, C. J. (2006). Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging. Nature Protocols, 1, 824–827.PubMedCrossRefGoogle Scholar
  97. 97.
    Reddy, P. V., Rama Rao, K. V., & Norenberg, M. D. (2008). The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Laboratory Investigations, 88, 816–830.CrossRefGoogle Scholar
  98. 98.
    Mishra, O. P., Pooniya, V., Ali, Z., Upadhyay, R. S., & Prasad, R. (2008). Antioxidant status of children with acute renal failure. Pediatric Nephrology, 23, 2047–2051.PubMedCrossRefGoogle Scholar
  99. 99.
    Zappasodi, F., Salustri, C., Babiloni, C., Cassetta, E., Del Percio, C., Ercolani, M., et al. (2008). An observational study on the influence of the APOE-epsilon4 allele on the correlation between ‘free’ copper toxicosis and EEG activity in Alzheimer’s disease. Brain Research, 1215, 183–189.PubMedCrossRefGoogle Scholar
  100. 100.
    Gupte, A., & Mumper, R. J. (2007). Copper chelation by D-penicillamine generates reactive oxygen species that are cytotoxic to human leukemia and breast cancer cells. Free Radical Biology and Medicine, 43, 1271–1278.PubMedCrossRefGoogle Scholar
  101. 101.
    Letavayova, L., Vlckova, V., & Brozmanova, J. (2006). Selenium: From cancer prevention to DNA damage. Toxicology, 227, 1–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Brown, K. M., & Arthur, J. R. (2001). Selenium, selenoproteins, and human health: A review. Public Health and Nutrition, 4, 593–599.Google Scholar
  103. 103.
    Kontoghiorghes, G. J., Efstathiou, A., Ioannou-Loucaides, S., & Kolnagou, A. (2008). Chelators controlling metal metabolism and toxicity pathways: Applications in cancer prevention, diagnosis, and treatment. Hemoglobin, 32, 217–227.PubMedCrossRefGoogle Scholar
  104. 104.
    Nielsen, P., Fischer, R., Buggisch, P., & Janka-Schaub, G. (2003). Effective treatment of hereditary haemochromatosis with desferrioxamine in selected cases. British Journal of Haematology, 123, 952–953.PubMedCrossRefGoogle Scholar
  105. 105.
    Hoffbrand, V. A., Cohen, A., & Hershko, C. (2003). Role of deferiprone in chelation therapy for transfusional iron overload. Blood, 102, 17–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Richardson, D. R., & Ponka, P. (1998). Development of iron chelators to treat iron overload disease and their use as experimental tools to probe intracellular iron metabolism. American Journal of Hematology, 58, 299–305.PubMedCrossRefGoogle Scholar
  107. 107.
    Zheng, Y., Li, X.-K., Wang, Y., & Cai, L. (2008). The role of zinc, copper, and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin, 32, 135–145.PubMedCrossRefGoogle Scholar
  108. 108.
    Miyoshi, K., Sugiura, Y., Ishizu, K., Iitaka, Y., & Nakamura, H. (1980). Glutathione-copper(II) complex with axial sulfur coordination and two copper sites via a disulfide bridge. Journal of the American Chemical Society, 102, 6130–6136.CrossRefGoogle Scholar
  109. 109.
    McAuliffe, C. A., Quagliano, J. V., & Vallarino, L. M. (1966). Metal complexes of the amino acid dl-methionine. Inorganic Chemistry, 5, 1996–2003.CrossRefGoogle Scholar
  110. 110.
    Sze, Y. K., Davis, A. R., & Neville, G. A. (1970). Raman and infrared studies of complexes of mercury(II) with cysteine, cysteine methyl ester, and methionine. Inorganic Chemistry, 14, 1969–1974.CrossRefGoogle Scholar
  111. 111.
    Shindo, H., & Brown, T. L. (1965). Infrared spectra of complexes of l-cysteine and related compounds with zinc(II), cadmium(II), mercury(II), and lead(II). Journal of the American Chemical Society, 87, 1904–1909.PubMedCrossRefGoogle Scholar
  112. 112.
    Livingstone, S. E., & Nolan, J. D. (1968). Metal chelates of biologically important compounds. I. Complexes of dl-methionine and S-methyl-l-cysteine. Inorganic Chemistry, 7, 1447–1451.CrossRefGoogle Scholar
  113. 113.
    Parcell, S. (2002). Sulfur in human nutrition and applications in medicine. Alternative Medicine Review, 7, 22–44.PubMedGoogle Scholar
  114. 114.
    Atmaca, G. (2004). Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal, 45, 776–788.PubMedGoogle Scholar
  115. 115.
    Fleischauer, A. T., & Arab, L. (2001). Garlic and cancer: A critical review of the epidemiologic literature. Journal of Nutrition, 131, 1032S–1040S.PubMedGoogle Scholar
  116. 116.
    Ip, C., & Ganther, H. E. (1992). Comparisons of selenium and sulfur analogs in cancer prevention. Carcinogenesis, 13, 1167–1170.PubMedCrossRefGoogle Scholar
  117. 117.
    Roediger, W. E. W., Moore, J., & Babidge, W. (1997). Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Digestive Diseases and Sciences, 42, 1571–1579.PubMedCrossRefGoogle Scholar
  118. 118.
    Sha, S.-H., & Schacht, J. (2000). Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: d-methionine is a potential protectant. Hearing Research, 142, 34–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Unnikrishnan, M. K., & Rao, M. N. A. (1990). Antiinflammatory activity of methionine, methionine sulfoxide, and methionine sulfone. Inflammation Research, 31, 110–112.Google Scholar
  120. 120.
    Brosnan, J. T., & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. Journal of Nutrition, 136, 1636S–1640S.PubMedGoogle Scholar
  121. 121.
    Huang, D., Zhang, Y., Qi, Y., Chen, C., & Ji, W. (2008). Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicology Letters, 179, 43–47.PubMedCrossRefGoogle Scholar
  122. 122.
    Penugonda, S., Mare, S., Goldstein, G., Banks, W. A., & Ercal, N. (2005). Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Research, 1056, 132–138.PubMedCrossRefGoogle Scholar
  123. 123.
    Delles, C., Miller, W. H., & Dominiczak, A. F. (2008). Targeting reactive oxygen species in hypertension. Antioxidants and Redox Signaling, 10, 1061–1077.PubMedCrossRefGoogle Scholar
  124. 124.
    Patrick, L. (2006). Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11, 114–127.PubMedGoogle Scholar
  125. 125.
    Smith, C. V., Jones, D. P., Guenther, T. M., Lash, L. H., & Lauterburg, B. H. (1996). Compartmentation of glutathione: Implications for the study of toxicity and disease. Toxicology and Applied Pharmacology, 140, 1–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Jones, D. P. (2006). Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Research, 9, 169–181.PubMedCrossRefGoogle Scholar
  127. 127.
    Jones, D. P. (2006). Redefining oxidative stress. Antioxidants and Redox Signaling, 8, 1865–1879.PubMedCrossRefGoogle Scholar
  128. 128.
    Go, Y.-M., & Jones, D. P. (2005). Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation, 111, 2973–2980.PubMedCrossRefGoogle Scholar
  129. 129.
    Yildiz, G., & Demiryurek, A. T. (1998). Ferrous iron-induced luminol chemiluminescence: A method for hydroxyl radical study. Journal of Pharmacological and Toxicological Methods, 39, 179–184.PubMedCrossRefGoogle Scholar
  130. 130.
    Wassef, R., Haenold, R., Hansel, A., Brot, N., Heinemann, S. H., & Hoshi, T. (2007). Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson’s-like symptoms. Journal of Neuroscience, 27, 12808–12816.PubMedCrossRefGoogle Scholar
  131. 131.
    Ito, T., Kimura, Y., Uozumi, Y., Takai, M., Muraoka, S., Matsuda, T., et al. (2008). Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. Journal of Molecular and Cellular Cardiology, 44, 927–937.PubMedCrossRefGoogle Scholar
  132. 132.
    Fotakis, G., & Timbrell, J. A. (2006). Modulation of cadmium chloride toxicity by sulphur amino acids in hepatoma cells. Toxicology in Vitro, 20, 641–648.PubMedCrossRefGoogle Scholar
  133. 133.
    de Melo Reis, R. A., Herculano, A. M., da Silva, M. C., dos Santos, R. M., & do Nascimento, J. L. (2007). In vitro toxicity induced by methylmercury on sympathetic neurons is reverted by l-cysteine or glutathione. Neuroscience Research, 58, 278–284.PubMedCrossRefGoogle Scholar
  134. 134.
    Cheung, P.-Y., Danial, H., Jong, J., & Schulz, R. (1998). Thiols protect the inhibition of myocardial aconitase by peroxynitrite. Archives of Biochemistry and Biophysics, 350, 104–108.PubMedCrossRefGoogle Scholar
  135. 135.
    Pfanzaql, B., Tribl, F., Koller, E., & Moslinger, T. (2003). Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine. Atherosclerosis, 168, 39–48.CrossRefGoogle Scholar
  136. 136.
    Bendini, M. G., Lanza, G. A., Mazza, A., Giordano, A., Leggio, M., Menichini, G., et al. (2007). Risk factors for cardiovascular diseases: What is the role for homocysteine? Giornale Italiano di Cardiologia, 8, 148–160.PubMedGoogle Scholar
  137. 137.
    Ceperkovic, Z. (2006). The role of increased levels of homocysteine in the development of cardiovascular diseases. Medicinski Pregled, 59, 143–147.PubMedCrossRefGoogle Scholar
  138. 138.
    Pezzini, A., Del Zotto, E., & Padovani, A. (2007). Homocysteine and cerebral ischemia: Pathogenic and therapeutic implications. Current Medicinal Chemistry, 14, 249–263.PubMedCrossRefGoogle Scholar
  139. 139.
    Venugopal, D., Zahid, M., Mailander, P. C., Meza, J. L., Rogan, E. G., Cavalieri, E. L., et al. (2008). Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine. Journal of Steroid Biochemistry and Molecular Biology, 109, 22–30.PubMedCrossRefGoogle Scholar
  140. 140.
    Song, D., Hutchings, S., & Pang, C. C. (2005). Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. European Journal of Pharmacology, 508, 205–210.PubMedCrossRefGoogle Scholar
  141. 141.
    Breitkreutz, R., Pittack, N., Nebe, C. T., Schuster, D., Brust, J., Beichert, M., et al. (2000). Improvement of immune function in HIV infection by sulfur supplementation: Two randomized trials. Journal of Molecular Medicine, 78, 55–62.PubMedCrossRefGoogle Scholar
  142. 142.
    Ates, B., Abraham, L., & Ercal, N. (2008). Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radical Research, 42, 372–377.PubMedCrossRefGoogle Scholar
  143. 143.
    Rooney, J. P. K. (2007). The role of thiols, dithiols, nutritional factors, and interacting ligands in the toxicology of mercury. Toxicology, 234, 145–156.PubMedCrossRefGoogle Scholar
  144. 144.
    Aposhian, H. V., Morgan, D. L., Queen, H. L. S., Maiorino, R. M., & Aposhian, M. M. (2003). Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercuy in rats exposed to mercury vapor. Journal of Toxicology: Clincial Toxicology, 41, 339–347.CrossRefGoogle Scholar
  145. 145.
    Bridges, C. C., & Zalups, R. K. (2005). Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology, 204, 274–308.PubMedCrossRefGoogle Scholar
  146. 146.
    Richardson, R. J., & Murphy, S. D. (1975). Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicology and Applied Pharmacology, 31, 505–519.PubMedCrossRefGoogle Scholar
  147. 147.
    Powolny, A. A., & Singh, S. V. (2008). Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Letters, 269, 305–314.PubMedCrossRefGoogle Scholar
  148. 148.
    Kim, J. M., Chang, H. J., Kim, W. K., Chang, N., & Chun, H. S. (2006). Structure–activity relationship of neuroprotective and reactive oxygen species scavenging activities for allium organosulfur compounds. Journal of Agricultural and Food Chemistry, 54, 6547–6553.PubMedCrossRefGoogle Scholar
  149. 149.
    Li, H., Li, H. Q., Wang, Y., Xu, H. X., Fan, W. T., Wang, M. L., et al. (2004). An intervention study to prevent gastric cancer by micro-selenium and large dose of allitridum. Chinese Medical Journal, 117, 1155–1160.PubMedGoogle Scholar
  150. 150.
    Kaufmann, Y., Spring, P., & Klimberg, V. S. (2008). Oral glutamine prevents DMBA-induced mammary carcinogenesis via upregulation of glutathione production. Nutrition, 24, 462–469.PubMedCrossRefGoogle Scholar
  151. 151.
    Yeh, C.-C., Hou, M.-F., Wu, S.-H., Tsai, S.-M., Lin, S.-K., Hou, L. A., et al. (2006). A study of glutathione status in the blood and tissues of patients with breast cancer. Cell Biochemistry and Function, 24, 555–559.PubMedCrossRefGoogle Scholar
  152. 152.
    Estrela, J. M., Ortega, A., & Obrador, E. (2006). Glutathione in cancer biology and therapy. Critical Reviews in Clinical and Laboratory Science, 43, 143–181.CrossRefGoogle Scholar
  153. 153.
    Balendiran, G. K., Dabur, R., & Fraser, D. (2004). The role of glutathione in cancer. Cell Biochemistry and Function, 22, 343–352.PubMedCrossRefGoogle Scholar
  154. 154.
    Zeevalk, G. D., Razmpour, R., & Bernard, L. P. (2008). Glutathione and Parkinson’s disease: Is this the elephant in the room? Biomedicine and Pharmacotherapy, 62, 236–249.CrossRefGoogle Scholar
  155. 155.
    Pensalfini, A., Cecchi, C., Zampagni, M., Becatti, M., Favilli, F., Paoli, P., et al. (2008). Protective effect of new S-acylglutathione derivatives against amyloid-induced oxidative stress. Free Radical Biology and Medicine, 44, 1624–1636.PubMedCrossRefGoogle Scholar
  156. 156.
    Bermejo, P., Martin-Aragon, S., Benedi, J., Susin, C., Felici, E., Gil, P., et al. (2008). Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from mild cognitive impairment. Free Radical Research, 42, 162–170.PubMedCrossRefGoogle Scholar
  157. 157.
    Bharath, S., Cochran, B. C., Hsu, M., Liu, J., Ames, B. N., & Andersen, J. K. (2002). Pre-treatment with R-lipoic acid alleviates the effects of GSH depletion in PC12 cells: Implications for Parkinson’s disease therapy. Neurotoxicology, 23, 479–486.CrossRefGoogle Scholar
  158. 158.
    Rezk, B. M., Haenen, G. R. M. M., van der Vijgh, W. J. F., & Bast, A. (2004). Lipoic acid protects efficiently only against a specific form of peroxynitrite-induced damage. Journal of Biological Chemistry, 279, 9693–9697.PubMedCrossRefGoogle Scholar
  159. 159.
    Risher, J. F., & Amler, S. N. (2005). Mercury exposure: Evaluation and intervention. The inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology, 26, 691–699.PubMedCrossRefGoogle Scholar
  160. 160.
    Pinto, J. T., & Rivlin, R. S. (2001). Antiproliferative effects of allium derivatives from garlic. Journal of Nutrition, 131, 1058S–1060S.PubMedGoogle Scholar
  161. 161.
    Shukla, Y., & Kalra, N. (2007). Cancer chemoprevention with garlic and its constituents. Cancer Letters, 247, 167–181.PubMedCrossRefGoogle Scholar
  162. 162.
    Kamada, K., Goto, S., Okunaga, T., Ihara, Y., Tsuji, K., Kawai, Y., et al. (2004). Nuclear glutathione S-transferase p prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products. Free Radical Biology and Medicine, 37, 1875–1884.PubMedCrossRefGoogle Scholar
  163. 163.
    Molina-Holgado, F., Hider, R. C., Gaeta, A., Williams, R., & Francis, P. (2007). Metals, ions, and neurodegeneration. BioMetals, 20, 639–654.PubMedCrossRefGoogle Scholar
  164. 164.
    Willcox, J. K., Ash, S. L., & Catignani, G. L. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition, 44, 275–295.PubMedCrossRefGoogle Scholar
  165. 165.
    Radi, R., Beckman, J. S., Bush, K. M., & Freeman, B. A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Journal of Biological Chemistry, 266, 4244–4250.PubMedGoogle Scholar
  166. 166.
    Karoui, H., Hogg, N., Frejaville, C., Tordo, P., & Kalyanaraman, B. (1996). Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. ESR-spin trapping and oxygen uptake studies. Journal of Biological Chemistry, 271, 6000–6009.PubMedCrossRefGoogle Scholar
  167. 167.
    Briviba, K., Roussyn, I., Sharov, V. S., & Sies, H. (1996). Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocysteine and ebselen. Biochemical Journal, 319, 13–15.PubMedGoogle Scholar
  168. 168.
    Whiteman, M., & Halliwell, B. (1997). Thiols and disulfides can aggravate peroxynitrite-dependent inactiviation of alpha-1-antiproteinase. FEBS Letters, 414, 497–500.PubMedCrossRefGoogle Scholar
  169. 169.
    Reist, M., Marshall, K.-A., Jenner, P., & Halliwell, B. (1998). Toxic effects of sulfite in combination with peroxynitrite on neuronal cells. Journal of Neurochemistry, 71, 2431–2438.PubMedGoogle Scholar
  170. 170.
    Nakagawa, H., Sumiki, E., Takusagawa, M., Ikota, N., Matsushima, Y., & Ozawa, T. (2000). Scavengers for peroxynitrite: Inhibition of tyrosine nitration and oxidation with tryptamine derivatives, alpha-lipoic acid and synthetic compounds. Chemical and Pharmaceutical Bulletin, 48, 261–265.Google Scholar
  171. 171.
    Giles, G. I., Tasker, K. M., & Jacob, C. (2001). Hypothesis: The role of reactive sulfur species in oxidative stress. Free Radical Biology and Medicine, 31, 1279–1283.PubMedCrossRefGoogle Scholar
  172. 172.
    Giles, G. I., & Jacob, C. (2002). Reactive sulfur species: An emerging concept in oxidative stress. Biological Chemistry, 383, 375–388.PubMedCrossRefGoogle Scholar
  173. 173.
    Anwar, A., Burkholz, T., Scherer, C., Abbas, M., Lehr, C.-M., Diederich, M., et al. (2008). Naturally occurring reactive sulfur species, their activity against Caco-2 cells, and possible modes of biochemical action. Journal of Sulfur Chemistry, 29, 251–268.CrossRefGoogle Scholar
  174. 174.
    Wiseman, A. (2004). Dietary alkyl thiol free radicals (RSS) can be as toxic as reactive oxygen species (ROS). Medical Hypotheses, 63, 667–670.PubMedCrossRefGoogle Scholar
  175. 175.
    Jacob, C., & Lancaster, J. R. G. G. I. (2004). Reactive sulphur species in oxidative signal transduction. Biochemical Society Transactions, 32, 1015–1017.PubMedCrossRefGoogle Scholar
  176. 176.
    Nagy, P., Becker, J. D., Mallo, R. C., & Ashby, M. T. (2007). The Jekyll and Hyde roles of cysteine derivatives during oxidative stress. ACS Symposium Series, 967 (New Biocides Development), 193–212.Google Scholar
  177. 177.
    Nagy, P., Lemma, K., & Ashby, M. T. (2007). Reactive sulfur species: Kinetics and mechanisms of the reaction of cysteine thiosulfinate ester with cysteine to give cysteine sulfenic acid. Journal of Organic Chemistry, 72, 8838–8846.PubMedCrossRefGoogle Scholar
  178. 178.
    Wang, X., & Ashby, M. T. (2008). Reactive sulfur species: Kinetics and mechanism of the reaction of thiocarbamate-S-oxide with cysteine. Chemical Research in Toxicology, 21, 2120–2126.PubMedCrossRefGoogle Scholar
  179. 179.
    Quig, D. (1998). Cysteine metabolism and metal toxicity. Alternative Medicine Review, 3, 262–270.PubMedGoogle Scholar
  180. 180.
    Waalkes, M. P., Liu, J., Goyer, R. A., & Diwan, B. A. (2004). Metallothionein-I/II double knockout mice are hypersensitive to lead-induced kidney carcinogenesis. Cancer Research, 64, 7766–7772.PubMedCrossRefGoogle Scholar
  181. 181.
    Liu, J., Liu, Y., Habeebu, S. M., Waalkes, M. P., & Klaasen, C. D. (2000). Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology, 147, 157–166.PubMedCrossRefGoogle Scholar
  182. 182.
    You, H. J., Lee, K. J., & Jeong, H. G. (2002). Overexpression of human metallothionein-III prevents hydrogen peroxide-induced oxidative stress in human fibroblasts. FEBS Letters, 521, 175–179.PubMedCrossRefGoogle Scholar
  183. 183.
    Presta, A., Green, A. R., Zelazowki, A., & Stillman, M. J. (1995). Copper binding to rabbit liver metallothionein. European Journal of Biochemistry, 227, 226–240.PubMedCrossRefGoogle Scholar
  184. 184.
    Jacob, C., Giles, G. I., Giles, N. M., & Sies, H. (2003). Sulfur and selenium: The role of oxidation state in protein structure and function. Angewandte Chemie. International Edition, 42, 4742–4758.CrossRefGoogle Scholar
  185. 185.
    Singhal, R. K., Anderson, M. E., & Meister, A. (1987). Glutathione, a first line of defense against cadmium toxicity. FASEB Journal, 1, 220–223.PubMedGoogle Scholar
  186. 186.
    Foster, L. H. (1995). Selenium in the environment, food, and health. Nutrition and Food Science, 95, 17–23.Google Scholar
  187. 187.
    Hawkes, W. C., Richter, B. D., Alkan, Z., Souza, E. C., Derricote, M., Mackey, B. E., et al. (2008). Response of selenium status indicators to supplementation of healthy north American men with high-selenium yeast. Biological Trace Element Research, 122, 107–121.PubMedCrossRefGoogle Scholar
  188. 188.
    Morris, V. C. & Levaner, O. A. (1970). Selenium content in foods. Journal of Nutrition, 100, 1383–1388.PubMedGoogle Scholar
  189. 189.
    Diwadkar-Navsariwala, V., Prins, G. S., Swanson, S. M., Birch, L. A., Ray, V. H., Hedayat, S., et al. (2006). Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proceedings of the National Academy of Science, 103, 8179–8184.CrossRefGoogle Scholar
  190. 190.
    Diwadkar-Navsariwala, V., & Diamond, A. M. (2004). The link between selenium and chemoprevention: A case for selenoproteins. Journal of Nutrition, 134, 2899–2902.PubMedGoogle Scholar
  191. 191.
    Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). The antioxidant role of selenium and seleno-compounds. Biomedicine & Pharmacotherapy, 57, 134–144.CrossRefGoogle Scholar
  192. 192.
    Papp, L. V., Lu, J., Holmgren, A., & Khanna, K. K. (2007). From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxidants and Redox Signaling, 9, 775–806.PubMedCrossRefGoogle Scholar
  193. 193.
    Lee, C. Y., Hsu, Y. C., Wang, J. Y., Chen, C. C., & Chiu, J. H. (2008). Chemopreventivie effect of selenium and Chinese medicinal herbs on N-nitrosobis(2-oxopropyl)amine-induced hepatocellular carcinoma in Syrian hamsters. Liver International, 28, 841–855.PubMedGoogle Scholar
  194. 194.
    Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S., & Butcher, R. J. (2001). Glutathione peroxidase-like antioxidant activity of diaryl diselenides: A mechanistic study. Journal of the American Chemical Society, 123, 839–850.PubMedCrossRefGoogle Scholar
  195. 195.
    Whanger, P. D. (2002). Selenocompounds in plants and animals and their biological significance. Journal of American College of Nutrition, 21, 223–232.Google Scholar
  196. 196.
    Kumar, B., Nahreini, P., Hanson, A. J., Andreatta, C., Prasad, J. E., & Prasad, K. N. (2005). Selenomethionine prevents degeneration induced by overexpression of wild-type human synuclein during differentiation of neuroblastoma cells. Journal of the American College of Nutrition, 24, 516–523.PubMedGoogle Scholar
  197. 197.
    De Silva, V., Woznichak, M. M., Burns, K. L., Grant, K. B., & May, S. W. (2004). Selenium redox cycling in the protective effects of organoselenides against oxidant-induced DNA damage. Journal of the American Chemical Society, 126, 2409–2413.PubMedCrossRefGoogle Scholar
  198. 198.
    Battin, E. E. & Brumaghim, J. L. Preventing metal-mediated oxidative DNA damage with selenium compounds. submitted.Google Scholar
  199. 199.
    Cao, T. H., Cooney, R. A., Woznichak, M. M., May, S. W., & Browner, R. F. (2001). Speciation and identification of organoselenium metabolites in human urine using inductively coupled plasma mass spectrometry and tandem mass spectrometry. Analytical Chemistry, 73, 2898–2902.PubMedCrossRefGoogle Scholar
  200. 200.
    Yasuda, K., Watanabe, H., Yamazaki, S., & Toda, S. (1980). Glutathione peroxidase activity of d, l-selenocysteine and selenocystamine. Biochemistry and Biophysics Research Communications, 96, 243–249.CrossRefGoogle Scholar
  201. 201.
    Schrauzer, G. N. (2000). Selenomethionine: A review of its nutritional significance, metabolism and toxicity. Journal of Nutrition, 130, 1653–1656.PubMedGoogle Scholar
  202. 202.
    Kunwar, A., Mishra, B., Barik, A., Kumbhare, L. B., Pandey, R., Jain, V. K., et al. (2007). 3, 3-Diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chemical Research in Toxicology, 20, 1482–1487.PubMedCrossRefGoogle Scholar
  203. 203.
    Fan, A. M., & Kizer, K. W. (1990). Selenium: Nutritional, toxicologic and clinical aspects. Western Journal of Medicine, 153, 160–167.PubMedGoogle Scholar
  204. 204.
    Ostadalova, I., Vobecky, M., Chvojkova, Z., Mikova, D., Hampl, V., Wilhelm, J., et al. (2007). Selenium protects the immature rat heart against ischemia/reperfusion injury. Molecular and Cellular Biochemistry, 300, 259–267.PubMedCrossRefGoogle Scholar
  205. 205.
    Toufektsian, M.-C., Boucher, F., Pucheu, S., Tanguy, S., Ribuot, C., Sanou, D., et al. (2000). Effects of selenium deficiency on the response of cardiac tissue to ischemia and reperfusion. Toxicology, 148, 125–132.PubMedCrossRefGoogle Scholar
  206. 206.
    Suzuki Kazuo, T., Yuki, O., & Suzuki, N. (2006). Availability and metabolism of 77Se-methylseleninic acid compared simultaneously with those of three related selenocompounds. Toxicology and Applied Pharmacology, 217, 51–62.PubMedCrossRefGoogle Scholar
  207. 207.
    Baljinnyam, E., Hasebe, N., Morihira, M., Sumitomo, K., Matsusaka, T., Fujino, T., et al. (2006). Oral pretreatment with ebselen enhances heat shock protein 72 expression and reduced myocardial infarct size. Hypertension Research, 29, 905–913.PubMedCrossRefGoogle Scholar
  208. 208.
    Imai, H., Graham, D. I., Masayasu, H., & Macrae, I. M. (2003). Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radical Biology and Medicine, 34, 56–63.PubMedCrossRefGoogle Scholar
  209. 209.
    Li, Y., & Cao, Z. (2002). The neuroprotectant ebselen inhibits oxidative DNA damage induced by dopamine in the presence of copper ions. Neuroscience Letters, 330, 69–73.PubMedCrossRefGoogle Scholar
  210. 210.
    Yamaguchi, T., Sano, K., Takakura, K., Saito, I., Shinohara, Y., Asano, T., et al. (1998). Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke, 29, 12–17.PubMedGoogle Scholar
  211. 211.
    Takahashi, H., Nishina, A., Fukumoto, R. H., Kimura, H., Koketsu, M., & Ishihara, H. (2005). Selenocarbamates are effective superoxide anion scavengers in vitro. European Journal of Pharmaceutical Sciences, 24, 291–295.PubMedCrossRefGoogle Scholar
  212. 212.
    Whanger, P. D. (2004). Selenium and its relationship to cancer: An update. British Journal of Nutrition, 91, 11–28.PubMedCrossRefGoogle Scholar
  213. 213.
    Xiong, S., Markesbery, W. R., Shao, C., & Lovell, M. A. (2007). Seleno-l-methionine protects against beta-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxidants and Redox Signaling, 9, 457–467.PubMedCrossRefGoogle Scholar
  214. 214.
    Clark, L. C., Combs, G. F., Jr., Turnbull, B. W., Slate, E. H., Chalker, D. K., Chow, J., et al. (1996). Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. Journal of the American Medical Association, 276, 1957–1963.PubMedCrossRefGoogle Scholar
  215. 215.
    Klein, E. A., Lippman, S. M., Thompson, I. M., Goodman, P. J., Albanes, D., Taylor, P. R., et al. (2003). The selenium and vitamin E cancer prevention trial. World Journal of Urology, 21, 21–27.PubMedGoogle Scholar
  216. 216.
    Bleys, J., Navas-Acien, A., & Guallar, E. (2008). Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Archives of Internal Medicine, 168, 404–410.PubMedCrossRefGoogle Scholar
  217. 217.
    Combs, G. F., Jr., & Gray, W. P. (1998). Chemopreventive agents: Selenium. Pharmacology and Therapeutics, 79, 179–192.PubMedCrossRefGoogle Scholar
  218. 218.
    Gromadzinska, J., Reszka, E., Bruzelius, K., Wasowicz, W., & Akesson, B. (2008). Selenium and cancer: Biomarkers of selenium status and molecular action of selenium supplements. European Journal of Nutrition, 47, 29–50.PubMedCrossRefGoogle Scholar
  219. 219.
    Kellen, E., Zeegers, M., & Buntinx, F. (2006). Selenium is inversely associated with bladder cancer risk: A report from the Belgian case-control study on bladder cancer. International Journal of Urology, 13, 1180–1184.PubMedCrossRefGoogle Scholar
  220. 220.
    Zuo, X. L., Chen, J. M., Zhou, X., Li, X. Z., & Mei, G. Y. (2006). Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biological Trace Element Research, 114, 41–53.PubMedCrossRefGoogle Scholar
  221. 221.
    Ozgen, I. T., Dagdemir, A., Elli, M., Saraymen, R., Pinarli, F. G., Fisqin, T., et al. (2007). Hair selenium status in children with leukemia and lymphoma. Journal of Pediatric Hematology/oncology, 29, 519–522.PubMedCrossRefGoogle Scholar
  222. 222.
    Musil, F., Zadak, Z., Solichova, D., Hyspler, R., Kaska, M., Sobotka, L., et al. (2005). Dynamics of antioxidants in patients with acute pancreatitis and in patients operated for colorectal cancer: A clinical study. Nutrition, 21, 118–124.PubMedCrossRefGoogle Scholar
  223. 223.
    Moradi, M., Hassan Eftekhari, M., Talei, A., & Rajaei Fard, A. (2009). A comparative study of selenium concentration and glutathione peroxidase activity in normal and breast cancer patients. Public Health and Nutrition, 12, 59–63.CrossRefGoogle Scholar
  224. 224.
    Fuyu, Y. (2006). Keshan disease and mitochondrial cardiomyopathy. Science in China Series C: Life Sciences, 49, 513–518.PubMedCrossRefGoogle Scholar
  225. 225.
    Burk, R. F. (2002). Selenium, an antioxidant nutrient. Nutrition and Clinical Care, 5, 75–79.CrossRefGoogle Scholar
  226. 226.
    Kosar, F., Sahin, I., Acikgoz, N., Aksoy, Y., Kucukbay, Z., & Cehreli, S. (2005). Significance of serum trace element status in patients with rheumatic heart disease: A prospective study. Biological Trace Element Research, 107, 1–10.PubMedCrossRefGoogle Scholar
  227. 227.
    Nawrot, T. S., Staessen, J. A., Roels, H. A., Hond, E. D., Lutgarde, T., Fargard, R. H., et al. (2007). Blood pressure and blood selenium: A cross-sectional and longitudinal population study. European Heart Journal, 28, 628–633.PubMedCrossRefGoogle Scholar
  228. 228.
    Flores-Mateo, G., Navas-Acien, A., Pastor-Barriuso, R., & Guallar, E. (2006). Selenium and coronary heart disease: A meta-analysis. American Journal of Clinical Nutrition, 84, 762–773.PubMedGoogle Scholar
  229. 229.
    Ashrafi, M. R., Shams, S., Nouri, M., Mohseni, M., Shabanian, R., Rekaninejad, M. S., et al. (2007). A probable causative factor for an old problem: Selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia, 48, 1750–1755.PubMedCrossRefGoogle Scholar
  230. 230.
    Akbaraly, N. T., Hininger-Favier, I., Carriere, I., Arnaud, J., Gourlet, V., Roussel, A. M., et al. (2007). Plasma selenium over time and cognitive decline in the elderly. Epidemiology, 18, 52–58.PubMedCrossRefGoogle Scholar
  231. 231.
    Chen, J. M., & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry, 86, 1–12.PubMedCrossRefGoogle Scholar
  232. 232.
    Wenstrup, D., Ehmann, W. D., & Markesbery, W. R. (1990). Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Research, 533, 125–131.PubMedCrossRefGoogle Scholar
  233. 233.
    Cornett, C. R., Markesbery, W. R., & Ehmann, W. D. (1998). Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology, 19, 339–345.PubMedGoogle Scholar
  234. 234.
    Ceballos-Picot, I., Merad-Boudia, M., Nicole, A., Thevenin, M., Hellier, G., Legrain, S., et al. (1996). Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type: Pace of the extracellular glutathione peroxidase. Free Radical Biology and Medicine, 20, 579–587.PubMedCrossRefGoogle Scholar
  235. 235.
    Clausen, J., Jensen, G. E., & Nielsen, S. A. (1988). Selenium in chronic neurologic diseases, multiple sclerosis, Batten’s disease. Biological Trace Element Research, 15, 179–203.PubMedCrossRefGoogle Scholar
  236. 236.
    Aguilar, M. V., Jimenez-Jimenez, F. J., Molina, J. A., Meseguer, I., Mateos-Vega, C. J., Gonzalez-Munoz, M. J., et al. (1998). Cerebrospinal fluid selenium and chromium levels in patients with Parkinson’s disease. Journal of Neural Transmission, 105, 1245–1251.PubMedCrossRefGoogle Scholar
  237. 237.
    Meseguer, I., Molina, J. A., Jimenez-Jimenez, F. J., Aguilar, M. V., Mateos-Vega, C. J., Gonzalez-Munoz, M. J., et al. (1999). Cerebrospinal fluid levels of selenium in patients with Alzheimer’s disease. Journal of Neural Transmission, 106, 309–315.PubMedCrossRefGoogle Scholar
  238. 238.
    Takahashi, H., Nishina, A., Fukumoto, R. H., Kimura, H., Koketsu, M., & Ishihara, H. (2005). Selenoureas and thioureas are effective superoxide radical scavengers in vitro. Life Sciences, 76, 2185–2192.PubMedCrossRefGoogle Scholar
  239. 239.
    Laude, K., Thuillez, C., & Richard, V. (2002). Peroxynitrite triggers a delayed resistance of coronary endothelial cells against ischemia-reperfusion injury. American Journal of Physiology Heart and Circulatory Physiology, 283, H1418–H1423.PubMedGoogle Scholar
  240. 240.
    Sies, H., & Arteel, G. E. (2000). Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radical Biology and Medicine, 28, 1451–1455.PubMedCrossRefGoogle Scholar
  241. 241.
    Trujillo, M., Ferrer-Sueta, G., & Radi, R. (2008). Peroxynitrite detoxification and its biologic implications. Antioxidants and Redox Signaling, 10, 1607–1620.PubMedCrossRefGoogle Scholar
  242. 242.
    Klotz, L.-O., Kroncke, K.-D., Buchczyk, D. P., & Sies, H. (2003). Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. Journal of Nutrition, 133, 1448S–1451S.PubMedGoogle Scholar
  243. 243.
    Sies, H. & Arteel, G. E. (2003). Strategies for controlling oxidative stress: Protection against peroxynitrite and hydroperoxides by selenoproteins and selenoorganic compounds. Critical Reviews of Oxidative Stress and Aging, 2.Google Scholar
  244. 244.
    Fang, Y.-A., Yang, S., & Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18, 872–879.PubMedCrossRefGoogle Scholar
  245. 245.
    Mugesh, G., & Singh, H. B. (2000). Biological activities of synthetic organoselenium compounds: Recent developments. Proceedings of National Academic Science, India, Section A: Physical Sciences, 70, 207–220.Google Scholar
  246. 246.
    Giles, G. I., Fry, F. H., Tasker, K. M., Holme, A. L., Peers, C., Green, K. N., et al. (2003). Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. Organic & Biomolecular Chemistry, 1, 4317–4322.CrossRefGoogle Scholar
  247. 247.
    Chang, T.-C., Huang, M.-L., Hsu, W.-L., Hwang, J.-M., & Hsu, L.-Y. (2003). Synthesis and biological evaluation of ebselen and its acyclic derivatives. Chemical and Pharmaceutical Bulletin, 51, 1213–1416.Google Scholar
  248. 248.
    Lin, C.-F., Chang, T.-C., Chiang, C.-C., Tsai, H.-J., & Hsu, L.-Y. (2005). Synthesis of selenium-containing polyphenolic acid esters and evaluation of their effects on antioxidation and 5-lipoxygenase inhibition. Chemical and Pharmaceutical Bulletin, 53, 1402–1407.CrossRefGoogle Scholar
  249. 249.
    Mugesh, G., du Mont, W.-W., & Sies, H. (2001). Chemistry of biologically important synthetic organoselenium compounds. Chemical Reviews, 101, 2125–2180.PubMedCrossRefGoogle Scholar
  250. 250.
    Wilson, S. R., Zucker, P. A., Huang, R.-R. C., & Spector, A. (1989). Development of synthetic compounds with glutathione peroxidase activity. Journal of the American Chemical Society, 111, 5936–5939.CrossRefGoogle Scholar
  251. 251.
    Stadtman, T. C. (2006). Selenium biochemistry: Mammalian selenoenzymes. Annals of the New York Academy of Sciences, 899, 399–402.CrossRefGoogle Scholar
  252. 252.
    Mugesh, G., Panda, A., Singh, H. B., Punekar, N. S., & Butcher, R. J. (1998). Diferrocenyl diselenides: Excellent thiol peroxidase-like antioxidants. Chemical Communications, 222, 7–2228.Google Scholar
  253. 253.
    Mishra, B., Priyadarsini, K. I., Mohan, H., & Mugesh, G. (2006). Horseradish peroxidase inhibition and antioxidant activity of ebselen and related organoselenium compounds. Bioorganic & Medicinal Chemistry Letters, 16, 5334–5338.CrossRefGoogle Scholar
  254. 254.
    Sarma, B., & Mugesh, G. (2005). Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: Unexpected complications with thiol exchange reactions. Journal of the American Chemical Society, 127, 11477–11485.PubMedCrossRefGoogle Scholar
  255. 255.
    Mareque, A. M.-M., Faez, J. M., Chistiaens, L., Kohnen, S., Deby, C., Hoebeke, M., et al. (2004). In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of some ebselen analogues. Redox Report, 9, 81–87.CrossRefGoogle Scholar
  256. 256.
    Mishra, B., Barik, A., Kunwar, A., Kumbhare, L. B., Priyadarsini, K. I., & Jain, V. K. (2008). Correlating the GPx activity of selenocystine derivatives with one-electron redox reactions. Phosphorus Sulfur Silicon, 183, 1018–1025.CrossRefGoogle Scholar
  257. 257.
    Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21, 361–370.PubMedCrossRefGoogle Scholar
  258. 258.
    Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C., & Sun, P. D. (1997). Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science, 275, 1305–1307.PubMedCrossRefGoogle Scholar
  259. 259.
    Garcin, E., Vernede, X., Hatchikian, E. C., Volbeda, A., Frey, M., & Fontecillia-Camps, J. C. (1999). The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure, 7, 557–566.PubMedCrossRefGoogle Scholar
  260. 260.
    Zainal, H. A., & Wolf, W. R. (1995). Potentiometric and spectroscopic study of selenomethionine complexes with copper(II) and zinc(II) ions. Transition Metal Chemistry, 20, 225–227.CrossRefGoogle Scholar
  261. 261.
    Goulet, A.-C., Chigbrow, M., Frisk, P., & Nelson, M. A. (2005). Selenomethionine induces sustained ERK phosphorylation leading to cell-cycle arrest in human colon cancer cells. Carcinogenesis, 26, 109–117.PubMedCrossRefGoogle Scholar
  262. 262.
    Zachara, B. A., Trafikowska, U., Adamowicz, A., Nartowicz, E., & Manitius, J. (2001). Selenium, glutathione peroxidases, and some other antioxidant parameters in blood of patients with chronic renal failure. Journal of Trace Elements in Medicine and Biology, 15, 161–166.PubMedCrossRefGoogle Scholar
  263. 263.
    Wetli, H. A., Buckett, P. D., & Wessling-Resnick, M. (2006). Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake. Chemistry & Biology, 13, 965–972.CrossRefGoogle Scholar
  264. 264.
    Oikawa, T., Esaki, N., Tanaka, H. & Soda, K. (1991). Metalloselenonein, the selenium analogue of metallothionein: Synthesis and characterization of its complex with copper ions. Proceedings of the National Academy of Science USA, 88, 3057–3059.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Chemistry DepartmentClemsonUSA

Personalised recommendations