Skip to main content

Advertisement

Log in

Translating Biomaterial Properties to Intracellular Signaling

  • REVIEW
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Bioactive materials present important micro-environmental cues that induce specific intracellular signaling responses which ultimately determine cell behavior. For example, vascular endothelial cells on a normal vessel wall resist inflammation and thrombosis, but the same cells seeded on an artificial vascular graft or stent do not. What makes these cells behave so differently when they are adhered to different materials? Intracellular signaling from integrins and other cell-surface receptors is an important part of the answer, but these signaling responses constitute a highly-branched, interconnected network of molecules. In order to perform rational design of biomaterials, one must understand how altering the properties of the material (micro-environment) causes changes in cell behavior, and this in turn requires understanding the complex signaling response. Systems biology and mathematical modeling aid analysis of the connectivity of this network. This review summarizes applicable systems biology and mathematical modeling techniques including ordinary differential equations-based models, principal component analysis, and Bayesian networks. Next covered is biomaterials research which studies the intracellular signaling responses generated by variation of biomaterial properties. Finally, the review details ways in which modeling has been or could be applied to better understand the link between biomaterial properties and intracellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, J. M. (1993). Mechanisms of inflammation and infection in implanted devices. Cardiovascular Pathology, 2, 33S.

    Article  Google Scholar 

  2. Anderson, J. M., & Langone, J. J. (1999). Issues and perspectives on the compatibility and immunotoxicity evaluation of implanted controlled released systems. Journal of Controlled Release, 57, 107–113.

    Article  PubMed  CAS  Google Scholar 

  3. Hu, W., Eaton, J. W., & Tang, L. (2001). Molecular basis of biomaterial-mediated foreign body reactions. Blood, 98, 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  4. Jenkins, D. D., Woo, R. K., & Greco, R. S. (2005). The host immune response to implantable devices. In R. S. Greco, F. B. Prinz, & S. R. Lane (Eds.), Nanoscale technology in biological systems. New York: CRC press.

    Google Scholar 

  5. McGuigan, A. P., & Sefton, M. V. (2007). The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials, 28, 2547–2571.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia, A. J. (2005). Get a grip: Integrins in cell-biomaterial interactions. Biomaterials, 26(36), 7525–7529.

    Article  PubMed  CAS  Google Scholar 

  7. Jones, J. L., & Walker, R. A. (1999). Integrins: A role as cell signaling molecules. Journal of Clinical Pathology: Molecular Pathology, 52, 208–213.

    Article  CAS  Google Scholar 

  8. Juliano, R. L., Redding, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signaling and motility. Biochemical Society Transactions, 32(3), 443–446.

    Article  PubMed  CAS  Google Scholar 

  9. Stupack, D. G., & Cheresh, D. A. (2002). Get a ligand, get a life: Integrins, signaling and cell survival. Journal of Cell Science, 115(Pt 19), 3729–3738.

    Article  PubMed  CAS  Google Scholar 

  10. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285, 1028.

    Article  PubMed  CAS  Google Scholar 

  11. Hynes, R. O. (1987). Integrins: A family of cell surface receptors. Cell, 48, 549–554.

    Article  PubMed  CAS  Google Scholar 

  12. Schlaepfer, D. D., & Hunter, T. (1998). Integrin signaling and tyrosine phosphorylation: Just the FAKs? Trends in Cell Biology, 8(4), 151–157.

    Article  PubMed  CAS  Google Scholar 

  13. Reyes, C. D., Petrie, T. A., & Garcia, A. J. (2008). Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling. Journal of Cellular Physiology, 217(2), 450–458.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi, N., Seko, Y., Noiri, E., Tobe, K., Kadowaki, T., Sabe, H., et al. (1999). Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circulation Research, 84(10), 1194–1202.

    PubMed  CAS  Google Scholar 

  15. Klein, S., Giancotti, F. G., Presta, M., Albelda, S. M., Buck, C. A., & Rifkin, D. B. (1993). Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Molecular Biology of the Cell, 4(10), 973–982.

    PubMed  CAS  Google Scholar 

  16. Rotundo, R. F., Curtis, T. M., Shah, M. D., Gao, B., Mastrangelo, A., LaFlamme, S. E., et al. (2002). TNF-alpha disruption of lung endothelial integrity: Reduced integrin mediated adhesion to fibronectin. American Journal of Physiology. Lung Cellular and Molecular Physiology, 282(2), L316–L329.

    PubMed  CAS  Google Scholar 

  17. Yeh, C. H., Peng, H. C., & Huang, T. F. (1999). Cytokines modulate integrin alpha(v)beta(3)-mediated human endothelial cell adhesion and calcium signaling. Experimental Cell Research, 251(1), 57–66.

    Article  PubMed  CAS  Google Scholar 

  18. Chien, S., Li, S., & Shyy, J. Y.-J. (1998). Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension, 31(2), 162–169.

    PubMed  CAS  Google Scholar 

  19. Jalali, S., del Pozo, M. A., Chen, K.-D., Miao, H., Li, Y.-S., Schwartz, M. A., et al. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1042–1046.

    Article  PubMed  CAS  Google Scholar 

  20. Janes, K. A., & Lauffenburger, D. A. (2006). A biological approach to computational models of proteomic networks. Current Opinion in Chemical Biology, 10, 73–80.

    Article  PubMed  CAS  Google Scholar 

  21. Truskey, G. A., Yuan, F., & Katz, D. F. (2004). Transport phenomenain biological systems. Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  22. Lauffenburger, D. A., & Linderman, J. J. (1993). Receptors: Models for binding, trafficking, and signaling (p. 365). New York: Oxford University Press.

    Google Scholar 

  23. Orton, R. J., Sturm, O. E., Vyshemirsky, V., Calder, M., Gilbert, D. R., & Kolch, W. (2005). Computational modeling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochemical Journal, 392, 249–261.

    Article  PubMed  CAS  Google Scholar 

  24. Kholodenko, B. N., Demin, O. V., Moehren, G., & Hoek, J. B. (1999). Quantification of short term signaling by the epidermal growth factor receptor. Journal of Biological Chemistry, 274(42), 30169–30181.

    Article  PubMed  CAS  Google Scholar 

  25. Brightman, F. A., & Fell, D. A. (2000). Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signaling in PC12 cells. FEBS Letters, 482, 169–174.

    Article  PubMed  CAS  Google Scholar 

  26. Schoeberl, B., Eichler-Jonsson, C., Gillies, E. D., & Muller, G. (2002). Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology, 20, 370–375.

    Article  PubMed  Google Scholar 

  27. Janes, K. A., Kelly, J. R., Gaudet, S., Albeck, J. G., Sorger, P. K., & Lauffenburger, D. A. (2004). Cue-signal-response analysis of TNF-induced apoptosis by partial least squares regression of dynamic multivariate data. Journal of Computational Biology, 11(4), 544–561.

    Article  PubMed  CAS  Google Scholar 

  28. Jolliffe, I. T. (2002). Principal component analysis. Springer series in statistics. New York: Springer.

    Google Scholar 

  29. Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. K., Lauffenburger, D. A., & Yaffe, M. B. (2005). A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science, 310, 1646–1653.

    Article  PubMed  CAS  Google Scholar 

  30. Janes, K. A., & Yaffe, M. B. (2006). Data-driven modeling of signal-transduction networks. Nature Reviews. Molecular Cell Biology, 7(11), 820–828.

    Article  PubMed  CAS  Google Scholar 

  31. PLS Toolbox Manual: Eigenvector, Inc.

  32. Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.

    Google Scholar 

  33. Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., & Lauffenburger, D. A. (2005). Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics, 21(6), 741–753.

    Article  PubMed  CAS  Google Scholar 

  34. Prudhomme, W., Daley, G. Q., Zandstra, P., & Lauffenburger, D. A. (2004). Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. PNAS, 101(9), 2900–2905.

    Article  PubMed  CAS  Google Scholar 

  35. Babensee, J. E. (2008). Interaction of dendritic cells with biomaterials. Seminars in Immunology, 20(2), 101–108.

    Article  PubMed  CAS  Google Scholar 

  36. Little, L., Healy, K. E., & Schaffer, D. (2008). Engineering biomaterials for synthetic neural stem cell microenvironments. Chemical Reviews, 108(5), 1787–1796.

    Article  PubMed  CAS  Google Scholar 

  37. Moon, J. J., & West, J. L. (2008). Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Current Topics in Medicinal Chemistry, 8(4), 300–310.

    Article  PubMed  CAS  Google Scholar 

  38. Badylak, S. F. (2007). The extracellular matrix as a biological scaffold material. Biomaterials, 28(35), 3587–3593.

    Article  PubMed  CAS  Google Scholar 

  39. Peyton, S. R., Ghajar, C. M., Khatiwala, C. B., & Putnam, A. J. (2007). The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochemistry and Biophysics, 47(2), 300–320.

    Article  PubMed  CAS  Google Scholar 

  40. Tang, L., Thevenot, P., & Hu, W. (2008). Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 8(4), 270–280.

    Article  PubMed  Google Scholar 

  41. Shen, M., Martinson, L., Wagner, M. S., Castner, D. G., Ratner, B. D., & Horbett, T. A. (2002). PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. Journal of Biomaterials Science. Polymer Edition, 13(4), 367–390.

    Article  PubMed  CAS  Google Scholar 

  42. Alberti, K., Davey, R. E., Onishi, K., George, S., Salchert, K., Seib, F. P., et al. (2008). Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods, 5(7), 645–650.

    Article  PubMed  CAS  Google Scholar 

  43. Alford, S. K., Kaneda, M. M., Wacker, B. K., & Elbert, D. L. (2008). Endothelial cell migration in human plasma is enhanced by a narrow range of added sphingosine 1-phosphate: Implications for biomaterials design. Journal of Biomedical Materials Research, Part A. doi:10.1002/jbm.a.31885.

  44. Wacker, B. K., Scott, E. A., Kaneda, M. M., Alford, S. K., & Elbert, D. L. (2006). Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules, 7, 1335–1343.

    Article  PubMed  CAS  Google Scholar 

  45. Maheshwari, G., Wells, A., Griffith, L. G., & Lauffenburger, D. A. (1999). Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophysical Journal, 76, 2814–2823.

    Article  PubMed  CAS  Google Scholar 

  46. Fan, V. H., Au, A., Tamama, K., Littrell, R., Richardson, L. B., Wright, J. W., et al. (2007). Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells, 25, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  47. Platt, M. O., Roman, A. J., Wells, A., Lauffenburger, D. A., & Griffith, L. G. (accepted). Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multi-potent marrow stromal cells. J Cell Physiol.

  48. Reyes, C. D., & Garcia, A. J. (2003). Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. Journal of Biomedical Materials Research, A, 65A, 511–523.

    Article  CAS  Google Scholar 

  49. Petrie, T. A., Capadona, J. R., Reyes, C. D., & Garcıa, A. J. (2006). Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials, 27, 5459–5470.

    Article  PubMed  CAS  Google Scholar 

  50. Mammoto, A., Mammoto, T., & Ingber, D. E. (2008). Rho signaling and mechanical control of vascular development. Current Opinion in Hematology, 15, 228–234.

    Article  PubMed  CAS  Google Scholar 

  51. Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. PNAS, 102(33), 11594–11599.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the NIH (R21 EB004386), the Arizona Biomedical Research Commission (#0916), and a Career Development and Faculty Transition Award to M.R.C. from the National Institute of Dental and Craniofacial Research (K22 DE014846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Caplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplan, M.R., Shah, M.M. Translating Biomaterial Properties to Intracellular Signaling. Cell Biochem Biophys 54, 1–10 (2009). https://doi.org/10.1007/s12013-009-9048-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9048-5

Keywords

Navigation