Cell Biochemistry and Biophysics

, Volume 53, Issue 2, pp 75–100 | Cite as

A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding

  • Nathan R. Perron
  • Julia L. BrumaghimEmail author
Review Paper


In this review, primary attention is given to the antioxidant (and prooxidant) activity of polyphenols arising from their interactions with iron both in vitro and in vivo. In addition, an overview of oxidative stress and the Fenton reaction is provided, as well as a discussion of the chemistry of iron binding by catecholate, gallate, and semiquinone ligands along with their stability constants, UV–vis spectra, stoichiometries in solution as a function of pH, rates of iron oxidation by O2 upon polyphenol binding, and the published crystal structures for iron–polyphenol complexes. Radical scavenging mechanisms of polyphenols unrelated to iron binding, their interactions with copper, and the prooxidant activity of iron–polyphenol complexes are briefly discussed.


Polyphenol antioxidants Iron binding Catecholate Gallate Flavonoids Catechins Tannins Proanthocyanidins EGCG Stability constant Autooxidation DNA damage Fenton reaction Cytotoxicity Cytoprotection Alzheimer’s Parkinson’s Blood and plasma Preservatives Radical scavenging Reactive oxygen species 












Gallic acid




Gallic acid methyl ester


Protocatechuic acid methyl ester


Protocatechuic acid


Gallic acid propyl ester


Reactive nitrogen species


Reactive oxygen species




Tannic acid


Vanillic acid


Electron paramagnetic resonance


Trolox-equivalent antioxidant activity


Oxygen radical absorbance capacity




  1. 1.
    Kühnau, J. (1976). The flavonoids: A class of semi-essential food components: Their role in human nutrition. World Review of Nutrition and Dietetics, 24, 117–191.PubMedGoogle Scholar
  2. 2.
    Sutherland, B. A., Rahman, R. M. A., & Appleton, I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. The Journal of Nutritional Biochemistry, 17, 291–306.PubMedGoogle Scholar
  3. 3.
    Cabrera, C., Artacho, R., & Gimenez, R. (2006). Beneficial effects of green tea—A review. Journal of the American College of Nutrition, 25, 79–99.PubMedGoogle Scholar
  4. 4.
    Gardner, E. J., Ruxton, C. H. S., & Leeds, A. R. (2007). Black tea—Helpful or harmful? A review of the evidence. European Journal of Clinical Nutrition, 61, 3–18.PubMedGoogle Scholar
  5. 5.
    Vinson, J. A. (1998). Flavonoids in foods as in vitro and in vivo antioxidants. Advances in Experimental Medicine and Biology, 439, 151–164.PubMedGoogle Scholar
  6. 6.
    Nardini, M., Cirillo, E., Natella, F., & Scaccini, C. (2002). Absorption of phenolic acids in humans after coffee consumption. Journal of Agricultural and Food Chemistry, 50, 5735–5741.PubMedGoogle Scholar
  7. 7.
    Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49, 5315–5321.PubMedGoogle Scholar
  8. 8.
    Mertens-Talcott, S. U., Jilma-Stohlawetz, P., Rios, J., Hingorani, L., & Derendorf, H. (2006). Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. Journal of Agricultural and Food Chemistry, 54, 8956–8961.PubMedGoogle Scholar
  9. 9.
    Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., et al. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56, 1415–1422.PubMedGoogle Scholar
  10. 10.
    Garcia-Alonso, F. J., Guidarelli, A., & Periago, M. J. (2007). Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tert-butylhydroperoxide in U937 cells: The role of iron chelation. The Journal of Nutritional Biochemistry, 18, 457–466.PubMedGoogle Scholar
  11. 11.
    Gil, M. I., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48, 4581–4589.PubMedGoogle Scholar
  12. 12.
    Vinson, J. A., Hao, Y., Su, X., & Zubik, L. (1998). Phenol antioxidant quantity and quality in foods: Vegetables. Journal of Agricultural and Food Chemistry, 46, 3630–3634.Google Scholar
  13. 13.
    Oboh, G., & Rocha, J. B. T. (2007). Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. European Food Research and Technology, 225, 239–247.Google Scholar
  14. 14.
    Gutiérrez, F., Arnaud, T., & Garrido, A. (2001). Contribution of polyphenols to the oxidative stability of virgin olive oil. Journal of the Science of Food and Agriculture, 81, 1463–1470.Google Scholar
  15. 15.
    Visioli, F., Bellomo, G., & Galli, C. (1998). Free radical-scavenging properties of olive oil polyphenols. Biochemical and Biophysical Research Communications, 247, 60–64.PubMedGoogle Scholar
  16. 16.
    Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V., & Dolara, P. (2001). Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. European Journal of Nutrition, 40, 74–77.PubMedGoogle Scholar
  17. 17.
    Makris, D. P., Psarra, E., Kallithraka, S., & Kefalas, P. (2003). The effect of polyphenolic composition as related to antioxidant capacity in white wines. Food Research International (Ottawa, Ont.), 36, 805–814.Google Scholar
  18. 18.
    Vinson, J. A., Proch, J., & Zubik, L. (1999). Phenol antioxidant quantity and quality in foods: Cocoa, dark chocolate, and milk chocolate. Journal of Agricultural and Food Chemistry, 47, 4821–4824.PubMedGoogle Scholar
  19. 19.
    Arts, I. C. W., Van de Putte, B., & Hollman, P. C. H. (2000). Catechin contents of foods commonly consumed in the Netherlands. Part 2. Tea, wine, fruit juices, and chocolate milk. Journal of Agricultural and Food Chemistry, 48, 1752–1757.PubMedGoogle Scholar
  20. 20.
    Arts, I. C. W., Van de Putte, B., & Hollman, P. C. H. (2000). Catechin contents of foods commonly consumed in the Netherlands. Part 1. Fruits, vegetables, staple foods, and processed foods. Journal of Agricultural and Food Chemistry, 48, 1746–1751.PubMedGoogle Scholar
  21. 21.
    de Pascual-Teresa, S., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2000). Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. Journal of Agricultural and Food Chemistry, 48, 5331–5337.PubMedGoogle Scholar
  22. 22.
    USDA. (2004). USDA database for the proanthocyanidin content of selected foods. Accessed December 18, 2008, from
  23. 23.
    “5 A Day”. (2008). Accessed April 9, 2008, from
  24. 24.
    Graham, H. N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 21, 334–350.PubMedGoogle Scholar
  25. 25.
    Reddy, V. C., Sagar, G. V. V., Sreeramulu, D., Venu, L., & Raghunath, M. (2005). Addition of milk does not alter the antioxidant activity of black tea. Annals of Nutrition and Metabolism, 49, 189–195.PubMedGoogle Scholar
  26. 26.
    Sugisawa, A., & Umegaki, K. (2002). Physiological concentrations of (−)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. Journal of Nutrition, 132, 1836–1839.PubMedGoogle Scholar
  27. 27.
    Van het Hof, K. H., Kivits, G. A. A., Weststrate, J. A., & Tijburg, L. B. M. (1998). Bioavailability of catechins from tea: The effect of milk. European Journal of Clinical Nutrition, 52, 356–359.Google Scholar
  28. 28.
    Yang, C. S., Chen, L., Lee, M.-J., Balentine, D., Kuo, M. C., & Schantz, S. P. (1998). Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiology, Biomarkers and Prevention, 7, 351–354.PubMedGoogle Scholar
  29. 29.
    Yamamoto, T., Hsu, S., Lewis, J., Wataha, J., Dickinson, D., Singh, B., et al. (2003). Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells. The Journal of Pharmacology and Experimental Therapeutics, 307, 230–236.PubMedGoogle Scholar
  30. 30.
    Erlund, I., Silaste, M. L., Alfthan, G., Rantala, M., Kesaniemi, Y. A., & Aro, A. (2002). Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. European Journal of Clinical Nutrition, 56, 891–898.PubMedGoogle Scholar
  31. 31.
    Hollman, P. C. H., Gaag, M. V. D., Mengelers, M. J. B., van Trijp, J. M. P., de Vries, J. H. M., & Katan, M. B. (1996). Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radical Biology and Medicine, 21, 703–707.PubMedGoogle Scholar
  32. 32.
    Nitta, Y., Kikuzaki, H., & Ueno, H. (2007). Food components inhibiting recombinant human histidine decarboxylase activity. Journal of Agricultural and Food Chemistry, 55, 299–304.PubMedGoogle Scholar
  33. 33.
    Macheix, J.-J., Fleuriet, A., & Billot, J. (1990). Fruit Phenolics (pp. 272–273). Boca Raton: CRC Press, Inc.Google Scholar
  34. 34.
    Romero, C., Medina, E., Vargas, J., Brenes, M., & De Castro, A. (2007). In vitro activity of olive oil polyphenols against Helicobacter pylori. Journal of Agricultural and Food Chemistry, 55, 680–686.PubMedGoogle Scholar
  35. 35.
    Song, J.-M., Lee, K.-H., & Seong, B.-L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68, 66–74.PubMedGoogle Scholar
  36. 36.
    Lorenz, M., Jochmann, N., von Krosigk, A., Martus, P., Baumann, G., Stangl, K., et al. (2007). Addition of milk prevents vascular protective effects of tea. European Heart Journal, 28, 219–223.PubMedGoogle Scholar
  37. 37.
    Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B., & Kromhout, D. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease. The Zutphen elderly study. Lancet, 342, 1007–1011.PubMedGoogle Scholar
  38. 38.
    Naasani, I., Oh-hashi, F., Oh-hara, T., Feng, W. Y., Johnston, J., Chan, K., et al. (2003). Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Research, 63, 824–830.PubMedGoogle Scholar
  39. 39.
    He, Q., Lv, Y., & Yao, K. (2006). Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chemistry, 101, 1178–1182.Google Scholar
  40. 40.
    Mandel, S. A., Amit, T., Zheng, H., Weinreb, O., & Youdim, M. B. H. (2006). The essentiality of iron chelation in neuroprotection: A potential role of green tea catechins. Oxidative Stress and Disease, 22, 277–299.Google Scholar
  41. 41.
    Lambert, J. D., & Yang, C. S. (2003). Mechanisms of cancer prevention by tea constituents. Journal of Nutrition, 133(Suppl), 3262S–3267S.PubMedGoogle Scholar
  42. 42.
    Fresco, P., Borges, F., Diniz, C., & Marques, M. P. M. (2006). New insights on the anticancer properties of dietary polyphenols. Medicinal Research Reviews, 26, 747–766.PubMedGoogle Scholar
  43. 43.
    Garg, A. K., Buchholz, T. A., & Aggarwal, B. B. (2005). Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxidants and Redox Signaling, 7, 1630–1647.PubMedGoogle Scholar
  44. 44.
    Stoner, G. D., & Casto, B. C. (2004). Chemoprevention by fruit phenolic compounds. In G. J. Kelloff, E. T. Hawk, & C. C. Sigman (Eds.), Cancer chemoprevention (pp. 419–435). Totowa, NJ: Humana Press, Inc.Google Scholar
  45. 45.
    Horvathova, K., Novotny, L., Tothova, D., & Vachalkova, A. (2004). Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H2O2-treated human ML cells K562. Neoplasma, 51, 395–399.PubMedGoogle Scholar
  46. 46.
    Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., & Yabu, Y. (1994). Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochemical and Biophysical Research Communications, 204, 898–904.PubMedGoogle Scholar
  47. 47.
    Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.PubMedGoogle Scholar
  48. 48.
    Huang, X. (2003). Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutation Research, 533, 153–171.PubMedGoogle Scholar
  49. 49.
    Hajiliadis, N. D. (Ed.). (1997). Cytotoxic, mutagenic, and carcinogenic potential of heavy metals related to human environment. Netherlands: Kluwer Academic Press.Google Scholar
  50. 50.
    Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants and Redox Signaling, 8, 2039–2045.PubMedGoogle Scholar
  51. 51.
    Halliwell, B. (2001). Role of free radicals in the neurodegenerative diseases. Drugs and Aging, 18, 685–716.PubMedGoogle Scholar
  52. 52.
    Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147.PubMedGoogle Scholar
  53. 53.
    Markesbery, W. R. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133–146.PubMedGoogle Scholar
  54. 54.
    Drew, B., & Leeuwenburgh, C. (2002). Aging and the role of reactive nitrogen species. Annals of the New York Academy of Sciences, 959, 66–81.PubMedGoogle Scholar
  55. 55.
    Vokurkova, M., Xu, S., & Touyz, R. M. (2007). Reactive oxygen species, cell growth, cell cycle progression and vascular remodeling in hypertension. Future Cardiology, 3, 53–63.PubMedGoogle Scholar
  56. 56.
    Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. The Journal of Biological Chemistry, 272, 20963–20966.PubMedGoogle Scholar
  57. 57.
    Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K.-I., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.PubMedGoogle Scholar
  58. 58.
    Chevion, M., Berenshtein, E., & Zhu, B.-Z. (1999). The role of transition metal ions in free radical-mediated damage. In D. L. Gilbert & C. A. Colton (Eds.), Reactive oxygen species in biological systems (pp. 103–131). New York: Plenum Publishers.Google Scholar
  59. 59.
    SciFinder search on May 5, 2008 using the terms “polyphenol” and “radical scavenging”, refined by year 1995–current (duplicate entries removed).Google Scholar
  60. 60.
    Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine, 16, 845–850.PubMedGoogle Scholar
  61. 61.
    Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355.PubMedGoogle Scholar
  62. 62.
    Muzolf, M., Szymusiak, H., Swiglo, A. G., Rietjens, I. M. C. M., & Tyrakowska, B. (2008). pH-dependent radical scavenging capacity of green tea catechins. Journal of Agricultural and Food Chemistry, 56, 816–823.PubMedGoogle Scholar
  63. 63.
    Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M., & Hara, Y. (1996). Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radical Biology and Medicine, 21, 895–902.PubMedGoogle Scholar
  64. 64.
    Borkowski, T., Szymusiak, H., Gliszczynska-Swiglo, A., Rietjens, I. M. C. M., & Tyrakowska, B. (2005). Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. Journal of Agricultural and Food Chemistry, 53, 5526–5534.PubMedGoogle Scholar
  65. 65.
    van Acker, S. A. B. E., Tromp, M. N. J. L., Haenen, G. R. M. M., van der Vijgh, W. J. F., & Bast, A. (1995). Flavonoids as scavengers of nitric oxide radical. Biochemical and Biophysical Research Communications, 214, 755–759.PubMedGoogle Scholar
  66. 66.
    Furuno, K., Akasako, T., & Sugihara, N. (2002). The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biological and Pharmaceutical Bulletin, 25, 19–23.PubMedGoogle Scholar
  67. 67.
    Keyer, K., Gort, A. S., & Imlay, J. A. (1995). Superoxide and the production of oxidative DNA damage. Journal of Bacteriology, 177, 6782–6790.PubMedGoogle Scholar
  68. 68.
    Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Poel, B. V., et al. (1998). Structure–activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61, 71–76.PubMedGoogle Scholar
  69. 69.
    Arts, M. J. T. J., Dallinga, J. S., Voss, H.-P., Haenen, G. R. M. M., & Bast, A. (2004). A new approach to asses the total antioxidant capacity using the TEAC assay. Food Chemistry, 88, 567–570.Google Scholar
  70. 70.
    Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity of phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290–4302.PubMedGoogle Scholar
  71. 71.
    Sharma, A., Bhardwaj, S., Mann, A. S., Jain, A., & Kharya, M. D. (2007). Screening methods of antioxidant activity: An overview. Pharmacognosy Reviews, 1, 232–238.Google Scholar
  72. 72.
    Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.PubMedGoogle Scholar
  73. 73.
    Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624.PubMedGoogle Scholar
  74. 74.
    Gilbert, D. L., & Colton, C. A. (Eds.). (1999). Reactive oxygen species in biological systems. New York: Plenum Publishers.Google Scholar
  75. 75.
    Adler, V., Yin, Z., Tew, K. D., & Ronai, Z. (1999). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18, 6104–6111.PubMedGoogle Scholar
  76. 76.
    Forman, H. J., & Torres, M. (2002). Reactive oxygen species and cell signaling. American Journal of Respiratory and Critical Care Medicine, 166, 54–58.Google Scholar
  77. 77.
    Bredt, D. S., & Snyder, S. H. (1994). Nitric oxide: A physiologic messenger molecule. Annual Review of Biochemistry, 63, 175–195.PubMedGoogle Scholar
  78. 78.
    Suzuki, Y. J., Forman, H. J., & Sevanian, A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine, 22, 269–285.PubMedGoogle Scholar
  79. 79.
    Rhee, S. G. (1999). Redox signaling: Hydrogen peroxide as intracellular messenger. Experimental and Molecular Medicine, 31, 53–59.PubMedGoogle Scholar
  80. 80.
    Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedGoogle Scholar
  81. 81.
    Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., & Beckman, J. S. (1992). Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chemical Research in Toxicology, 5, 834–842.PubMedGoogle Scholar
  82. 82.
    Squadrito, G. L., & Pryor, W. A. (1995). The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chemico-Biological Interactions, 96, 203–206.PubMedGoogle Scholar
  83. 83.
    Henle, E. S., & Linn, S. (1997). Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. The Journal of Biological Chemistry, 272, 19095–19098.PubMedGoogle Scholar
  84. 84.
    Imlay, J. A., & Linn, S. (1988). DNA damage and oxygen radical toxicity. Science, 240, 1302–1309.PubMedGoogle Scholar
  85. 85.
    Henle, E. S., Han, Z., Tang, N., Rai, P., Luo, Y., & Linn, S. (1999). Sequence-specific DNA cleavage by Fe2+-mediated Fenton reaction has possible biological implications. The Journal of Biological Chemistry, 274, 962–971.PubMedGoogle Scholar
  86. 86.
    Battin, E. E., Perron, N. R., & Brumaghim, J. L. (2006). The central role of metal coordination in selenium antioxidant activity. Inorganic Chemistry, 45, 499–501.PubMedGoogle Scholar
  87. 87.
    Flint, D. H., Tuminello, J. F., & Emptage, M. H. (1993). The inactivation of Fe–S cluster containing hydro-lyases by superoxide. The Journal of Biological Chemistry, 268, 22369–22376.PubMedGoogle Scholar
  88. 88.
    Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Sciences of the United States of America, 93, 13635–13640.PubMedGoogle Scholar
  89. 89.
    Benov, L. (2001). How superoxide radical damages the cell. Protoplasma, 217, 33–36.PubMedGoogle Scholar
  90. 90.
    Haber, F., & Weiss, J. (1932). Über die katalyse des hydroperoxydes. Naturwiss, 51, 948–950.Google Scholar
  91. 91.
    Koppenol, W. H. (2001). The Haber–Weiss cycle—70 years later. Redox Report, 6, 229–234.PubMedGoogle Scholar
  92. 92.
    George, P. (1947). Some experiments on the reactions of potassium superoxide in aqueous solutions. Discussions of the Faraday Society, 2, 196–205.Google Scholar
  93. 93.
    Nakagawa, O., Ono, S., Tsujimoto, A., Li, Z., & Sasaki, S. (2007). Selective fluorescence detection of 8-oxoguanosine with 8-oxoG-CLAMP. Nucleosides, Nucleotides, and Nucleic Acids, 26, 645–649.PubMedGoogle Scholar
  94. 94.
    Weimann, A., Belling, D., & Poulsen, H. E. (2002). Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Research, 30, e7/1–e7/8.Google Scholar
  95. 95.
    Shigenaga, M. K., Aboujaoude, E. N., Chen, Q., & Ames, B. N. (1994). Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods in Enzymology, 234, 16–33.PubMedGoogle Scholar
  96. 96.
    Shigenaga, M. K., Gimeno, C. J., & Ames, B. N. (1989). Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 86, 9697–9701.PubMedGoogle Scholar
  97. 97.
    Zheng, L.-F., Dai, F., Zhou, B., Yang, L., & Liu, Z.-L. (2008). Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure-activity relationship. Food and Chemical Toxicology, 46, 149–156.PubMedGoogle Scholar
  98. 98.
    Ohshima, H., Gilibert, I., & Bianchini, F. (1999). Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radical Biology and Medicine, 26, 1305–1313.PubMedGoogle Scholar
  99. 99.
    Fisher, G. R., & Gutierrez, P. L. (1991). Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase. Free Radical Biology and Medicine, 11, 597–607.PubMedGoogle Scholar
  100. 100.
    Kashige, N., Yamaguchi, T., Ohtakara, A., Mitsutomi, M., Brimacombe, J. S., Miake, F., et al. (1994). Structure-activity relationships in the induction of single-strand breakage in plasmid pBR322 DNA by amino sugars and derivatives. Carbohydrate Research, 257, 285–291.PubMedGoogle Scholar
  101. 101.
    Bhat, R., & Hadi, S. M. (1994). DNA breakage by tannic acid and Cu(II): Sequence specificity of the reaction and involvement of active oxygen species. Mutation Research, 313, 39–48.PubMedGoogle Scholar
  102. 102.
    Rai, P., Cole, T. D., Wemmer, D. E., & Linn, S. (2001). Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and hydrogen peroxide. Journal of Molecular Biology, 312, 1089–1101.PubMedGoogle Scholar
  103. 103.
    Gao, Y. G., Sriram, M., & Wang, A. H. (1993). Crystallographic studies of metal ion–DNA interactions: Different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug–DNA complex. Nucleic Acids Research, 21, 4093–4101.PubMedGoogle Scholar
  104. 104.
    Rai, P., Wemmer, D. E., & Linn, S. (2005). Preferential binding and structural distortion by Fe2+ at RGGG-containing DNA sequences correlates with enhanced oxidative cleavage at such sequences. Nucleic Acids Research, 33, 497–510.PubMedGoogle Scholar
  105. 105.
    Lu, A.-L., Li, X., Gu, Y., Wright, P. M., & Chang, D.-Y. (2001). Repair of oxidative DNA damage. Cell Biochemistry and Biophysics, 35, 141–170.PubMedGoogle Scholar
  106. 106.
    Kennedy, L. J., Moore, K., Jr., Caulfield, J. L., Tannenbaum, S. R., & Dedon, P. C. (1997). Quantitaion of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chemical Research in Toxicology, 10, 386–392.PubMedGoogle Scholar
  107. 107.
    Aruoma, O. I., Halliwell, B., Gajewski, E., & Dizdaroglu, M. (1991). Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. The Biochemical Journal, 273, 601–604.PubMedGoogle Scholar
  108. 108.
    Macomber, L., Rensing, C., & Imlay, J. A. (2007). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. Journal of Bacteriology, 189, 1616–1626.PubMedGoogle Scholar
  109. 109.
    Mello-Filho, A. C., & Meneghini, R. (1991). Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals. Mutation Research, 251, 109–113.PubMedGoogle Scholar
  110. 110.
    Hoffmann, M. E., Mello-Filho, A. C., & Meneghini, R. (1984). Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochimica et Biophysica Acta, 781, 234–238.PubMedGoogle Scholar
  111. 111.
    Andrews, N. C. (2004). Probing the iron pool. Focus on “detection of intracellular iron by its regulatory effect”. American Journal of Physiology. Cell Physiology, 287, C1537–C1538.PubMedGoogle Scholar
  112. 112.
    Yamamoto, Y., Fukui, K., Koujin, N., Ohya, H., Kimura, K., & Kamio, Y. (2004). Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. Journal of Bacteriology, 186, 5997–6002.PubMedGoogle Scholar
  113. 113.
    Woodmansee, A. N., & Imlay, J. A. (2002). Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods in Enzymology, 349, 3–9.PubMedGoogle Scholar
  114. 114.
    Jacobs, A. (1977). Low molecular weight intracellular iron transport compounds. Blood, 50, 433–439.PubMedGoogle Scholar
  115. 115.
    Miller, J. P. G., & Perkins, D. J. (1969). Model experiments for the study of iron transfer from transferrin to ferritin. European Journal of Biochemistry, 10, 146–151.PubMedGoogle Scholar
  116. 116.
    Touati, D., Jacques, M., Tardat, B., Bouchard, L., & Despied, S. (1995). Lethal oxidative damage and mutagenesis are generated by iron in Δfur mutants of Escherichia coli: Protective role of superoxide dismutase. Journal of Bacteriology, 177, 2305–2314.PubMedGoogle Scholar
  117. 117.
    Biemond, P., Swaak, A. J. G., van Eijk, H. G., & Koster, J. F. (1988). Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radical Biology and Medicine, 4, 185–198.PubMedGoogle Scholar
  118. 118.
    Ke, Y., & Qian, Z. M. (2003). Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurology, 2, 246–253.PubMedGoogle Scholar
  119. 119.
    Selima, M. H., & Ratan, R. R. (2004). The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews, 3, 345–353.Google Scholar
  120. 120.
    Wood, R. J. (2004). The iron–heart disease connection: Is it dead or just hiding? Ageing Research Reviews, 3, 355–367.PubMedGoogle Scholar
  121. 121.
    Brewer, G. J. (2007). Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Experimental Biology and Medicine, 232, 323–335.PubMedGoogle Scholar
  122. 122.
    Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.PubMedGoogle Scholar
  123. 123.
    Luxford, C., Dean, R. T., & Davies, M. J. (2000). Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA. Chemical Research in Toxicology, 13, 665–672.PubMedGoogle Scholar
  124. 124.
    Liang, Q., & Dedon, P. C. (2001). Cu(II)/H2O2-induced DNA damage is enhanced by packaging of DNA as a nucleosome. Chemical Research in Toxicology, 14, 416–422.PubMedGoogle Scholar
  125. 125.
    Midorikawa, K., Murata, M., & Kawanishi, S. (2005). Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity. Biochemical and Biophysical Research Communications, 333, 1073–1077.PubMedGoogle Scholar
  126. 126.
    Turro, N. J. (2002). Damage control of DNA in nucleosome core particles: When a histone’s loving embrace is just not good enough. Chemistry and Biology, 9, 399–401.PubMedGoogle Scholar
  127. 127.
    Weissman, L., de Souza-Pinto, N. C., Stevnsner, T., & Bohr, V. A. (2007). DNA repair, mitochondria, and neurodegeneration. Neuroscience, 145, 1318–1329.PubMedGoogle Scholar
  128. 128.
    Berneburg, M., Kamenisch, M., Krutmann, J., & Roecken, M. (2006). ‘To repair or not to repair—No longer a question’: Repair of mitochondrial DNA shielding against age and cancer. Experimental Dermatology, 15, 1005–1015.PubMedGoogle Scholar
  129. 129.
    Birch-Machin, M. A. (2005). Using mitochondrial DNA as a biosensor of early cancer development. British Journal of Cancer, 93, 271–272.PubMedGoogle Scholar
  130. 130.
    Chatterjee, A., Mambo, E., Zhang, Y., DeWeese, T., & Sidransky, D. (2006). Targeting of mutant hogg1 in mammalian mitochondria and nucleus: effect on cellular survival upon oxidative stress. BMC Cancer, 6, 235.PubMedGoogle Scholar
  131. 131.
    de Grey, A. D. N. J. (1997). A proposed refinement of the mitochondrial free radical theory of aging. BioEssays, 19, 161–166.PubMedGoogle Scholar
  132. 132.
    Hider, R. C., Liu, Z. D., & Khodr, H. H. (2001). Metal chelation of polyphenols. Methods in Enzymology, 335, 190–203.PubMedGoogle Scholar
  133. 133.
    Pearson, R. G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society, 85, 3533–3539.Google Scholar
  134. 134.
    Loomis, L. D., & Raymond, K. N. (1991). Solution equilibria of enterobactin and metal–enterobactin complexes. Inorganic Chemistry, 30, 906–911.Google Scholar
  135. 135.
    Avdeef, A., Sofen, S. R., Bregante, T. L., & Raymond, K. N. (1978). Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. Journal of the American Chemical Society, 100, 5362–5370.Google Scholar
  136. 136.
    Martell, A. E., & Smith, R. M. (1977). Critical stability constants (Vol. 3, pp. 200–201). New York: Plenum Press.Google Scholar
  137. 137.
    Kipton, H., Powell, J., & Taylor, M. C. (1982). Interactions of iron(II) and iron(III) with gallic acid and its homologues: A potentiometric and spectrophotometric study. Australian Journal of Chemistry, 35, 739–756.Google Scholar
  138. 138.
    Erdogan, G., Karadag, R., & Dolen, E. (2005). Potentiometric and spectrophotometric determination of the stability constants of quercetin (3, 3′4′, 5, 7-pentahydroxyflavone) complexes with aluminium(III) and iron(II). Reviews in Analytical Chemistry, 24, 247–261.Google Scholar
  139. 139.
    Buffle, J., & Martell, A. E. (1977). Metal ion catalyzed oxidation of o-dihydroxy aromatic compounds by oxygen. 2. Complexes of 1, 2-dihydroxynaphthalene-4-sulfonate with iron(III) and iron(II). Inorganic Chemistry, 16, 2225–2229.Google Scholar
  140. 140.
    Binbuga, N., Chambers, K., Henry, W. P., & Schultz, T. P. (2005). Metal chelation studies relevant to wood preservation. 1. Complexation of propyl gallate with Fe2+. Holzforschung, 59, 205–209.Google Scholar
  141. 141.
    Chvátalová, K., Slaninová, I., Brezinová, L., & Slanina, J. (2008). Influence of dietary phenolic acids on redox status of iron: Ferrous iron autoxidation and ferric iron reduction. Food Chemistry, 106, 650–660.Google Scholar
  142. 142.
    Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Analytical Biochemistry, 257, 40–44.PubMedGoogle Scholar
  143. 143.
    Kawabata, T., Schepkin, V., Haramaki, N., Phadke, R. S., & Packer, L. (1996). Iron coordination by catechol derivative antioxidants. Biochemical Pharmacology, 51, 1569–1577.PubMedGoogle Scholar
  144. 144.
    Ohashi, Y., Yoshinaga, K., Yoshioka, H., & Yoshioka, H. (2002). Kinetic analysis of the effect of (−)-epigallocatechin gallate on the DNA strand scission induced by Fe(II). Bioscience, Biotechnology, and Biochemistry, 66, 770–776.PubMedGoogle Scholar
  145. 145.
    Hajji, H. E., Nkhili, E., Tomao, V., & Dangles, O. (2006). Interactions of quercetin with iron and copper ions: Complexation and autoxidation. Free Radical Research, 40, 303–320.PubMedGoogle Scholar
  146. 146.
    Cooper, S. R., McArdle, J. V., & Raymond, K. N. (1978). Siderophore electrochemistry: Relation to intracellular iron release mechanism. Proceedings of the National Academy of Sciences of the United States of America, 75, 3551–3554.PubMedGoogle Scholar
  147. 147.
    McBryde, W. A. E. (1964). A spectrophotometric reexamination of the spectra and stabilities of the iron (III)—Tiron complexes. Canadian Journal of Chemistry, 42, 1917–1927.Google Scholar
  148. 148.
    Perron, N. R., DeGuire, S. M., & Brumaghim, J. L. (2008). Kinetics of iron oxidation upon polyphenol binding (in preparation).Google Scholar
  149. 149.
    Stumm, W., & Lee, G. F. (1961). Oxygenation of ferrous iron. Industrial and Engineering Chemistry, 53, 143–146.Google Scholar
  150. 150.
    King, J., & Davidson, N. (1958). Kinetics of the ferrous iron-oxygen reaction in acidic phosphate–pyrophosphate solutions. Journal of the American Chemical Society, 80, 1542–1545.Google Scholar
  151. 151.
    Posner, A. M. (1953). The kinetics of autoxidation of ferrous ions in concentrated HCl solutions. Transactions of Faraday Society, 49, 382–388.Google Scholar
  152. 152.
    Huffman, R. E., & Davidson, N. (1956). Kinetics of the ferrous iron-oxygen reaction in sulfuric acid solution. Journal of the American Chemical Society, 78, 4836–4842.Google Scholar
  153. 153.
    George, P. (1954). The oxidation of ferrous perchlorate by molecular oxygen. Journal of the Chemical Society, 4349–4359.Google Scholar
  154. 154.
    Ryan, P., & Hynes, M. J. (2007). The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). Journal of Inorganic Biochemistry, 101, 585–593.PubMedGoogle Scholar
  155. 155.
    Jameson, G. N. L., & Linert, W. (2001). The oxidation of 6-hydroxydopamine in aqueous solution. Part 3. Kinetics and mechanism of the oxidation with iron(III). Journal of the Chemical Society. Perkin Transactions, 2, 569–575.Google Scholar
  156. 156.
    Hynes, M. J., & Coinceanainn, M. O. (2001). The kinetics and mechanisms of the reaction of iron(III) with gallic acid, gallic acid methyl ester and catechin. Journal of Inorganic Biochemistry, 85, 131–142.PubMedGoogle Scholar
  157. 157.
    Ryan, P., & Hynes, M. J. (2008). The kinetics and mechanisms of the reactions of iron(III) with quercetin and morin. Journal of Inorganic Biochemistry, 102, 127–136.PubMedCrossRefGoogle Scholar
  158. 158.
    El-Ayaan, U., Herlinger, E., Jameson, R. F., & Linert, W. (1997). Anaerobic oxidation of dopamine by iron(III). Journal of the Chemical Society, Dalton Transactions, 2813–2818.Google Scholar
  159. 159.
    Basolo, F., & Pearson, R. G. (1967). Mechanism of inorganic reactions, a study of metal complexes in solution (2nd ed.). New York: Wiley.Google Scholar
  160. 160.
    Hider, R. C., Mohr-Nor, A. R., Silver, J., Morrison, I. E. G., & Rees, L. V. C. (1981). Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes from phenolic and catecholic systems. Journal of the Chemical Society, Dalton Transactions, 609–622.Google Scholar
  161. 161.
    Hider, R. C., Howlin, B., Miller, J. R., Mohr-Nor, A. R., & Silver, J. (1983). Model compounds for microbial iron-transport compounds. Part IV. Further solution chemistry and Mössbauer studies on iron(II) and iron(III) catechol complexes. Inorganica Chimica Acta, 80, 51–56.Google Scholar
  162. 162.
    Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48, 3396–3402.PubMedGoogle Scholar
  163. 163.
    Zhang, L., Bandy, B., & Davison, A. J. (1996). Effects of metals, ligands and antioxidants on the reaction of oxygen with 1, 2, 4-benzenetriol. Free Radical Biology and Medicine, 20, 495–505.PubMedGoogle Scholar
  164. 164.
    Puppo, A. (1992). Effect of flavonoids on hydroxyl radical formation by Fenton-type reactions; influence of the iron chelator. Phytochemistry, 31, 85–88.Google Scholar
  165. 165.
    Laughton, M. J., Halliwell, B., Evans, P. J., & Hoult, J. R. S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.PubMedGoogle Scholar
  166. 166.
    Schweigert, N., Zehnder, A. J. B., & Eggen, R. I. L. (2001). Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiology, 3, 81–91.PubMedGoogle Scholar
  167. 167.
    Yamahara, R., Ogo, S., Masuda, H., & Watanabe, Y. (2002). (Catecholato)iron(III) complexes: Structural and functional models for the catechol-bound iron(III) form of catechol dioxygenases. Journal of Inorganic Biochemistry, 88, 284–294.PubMedGoogle Scholar
  168. 168.
    Wunderlich, C. H., Weber, R., & Bergerhoff, G. (1991). On iron gallic ink. Zeitschrift für Anorganische Und Allgemeine Chemie, 598(599), 371–376.Google Scholar
  169. 169.
    Feller, R. K., & Cheetham, A. K. (2006). Fe(III), Mn(II), Co(II), and Ni(II) 3, 4, 5-trihydroxybenzoate (gallate) dihydrates; a new family of hybrid framework materials. Solid State Sciences, 8, 1121–1125.Google Scholar
  170. 170.
    Higuchi, M., Hitomi, Y., Minami, H., Tanaka, T., & Funabiki, T. (2005). Correlation of spin states and spin delocalization with the dioxygen reactivity of catecholatoiron (III) complexes. Inorganic Chemistry, 44, 8810–8821.PubMedGoogle Scholar
  171. 171.
    Floquet, S., Simaan, A. J., Rivière, E., Nierlich, M., Thuéry, P., Ensling, J., Gütlich, P., Girerd, J.-J., Boillot, M.-L. (2005). Spin crossover of ferric complexes with catecholate derivatives. Single-crystal X-ray structure, magnetic and Mössbauer investigations. Dalton Transactions, 1734–1742.Google Scholar
  172. 172.
    Chiou, Y.-M., & Que, L. (1995). Structure of a mononuclear iron(II)-catecholate complex and its relevance to the extradiol-cleaving catechol dioxygenases. Inorganic Chemistry, 34, 3577–3578.Google Scholar
  173. 173.
    Velusamy, M., Mayilmurugan, R., & Palaniadavar, M. (2004). Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1, 2-dioxygenases: The role of ligands stereoelectronic properties. Inorganic Chemistry, 43, 6284–6293.PubMedGoogle Scholar
  174. 174.
    Jo, D.-H., Chiou, Y.-M., & Que, J. L. (2001). Models of extradiol cleaving catechol dioxygenases: Syntheses, structures, and reactivities of iron(II)-monoanionic catecholate complexes. Inorganic Chemistry, 40, 3181–3190.PubMedGoogle Scholar
  175. 175.
    Grillo, V. A., Hanson, G. R., Wang, D., Hambley, T. W., Gahan, L. R., Murray, K. S., et al. (1996). Synthesis, X-ray structural determination, and magnetic susceptibility, Mössbauer, and EPR studies of (Ph4P)2[Fe2(Cat)4(H2O)2]·6H2O, a catecholato-bridged dimer of iron(III). Inorganic Chemistry, 35, 3568–3576.Google Scholar
  176. 176.
    Caulder, D. L., Powers, R. E., Parac, T. N., & Raymond, K. N. (1998). The self-assembly of a predesigned tetrahedral M4L6 supramolecular cluster. Angewandte Chemie (International ed. in English), 37, 1840–1843.Google Scholar
  177. 177.
    Jewett, S. L., Eggling, S., & Geller, L. (1997). Novel method to examine the formation of unstable 2:1 and 3:1 complexes of catecholamines and iron(III). Journal of Inorganic Biochemistry, 66, 165–173.Google Scholar
  178. 178.
    Jovanovic, S. V., Simic, M. G., Steenken, S., & Hara, Y. (1998). Iron complexes of gallocatechins. Antioxidant action or iron regulation? Journal of the Chemical Society. Perkin Transactions, 2, 2365–2369.Google Scholar
  179. 179.
    Ackermann, V. G., & Hesse, D. (1970). Über eisen(III)-komplexe mit phenolen. III. Zeitschrift für Anorganische Und Allgemeine Chemie, 375, 77–86.Google Scholar
  180. 180.
    Maqsood, Z. A. T., & Kazmi, S. A. (1993). Formation of iron gallic acid complexes at different pH and determination of their stability constants. Pakistan Journal of Scientific and Industrial Research, 6, 511–516.Google Scholar
  181. 181.
    Perron, N. R., Hodges, J. N., Jenkins, M., & Brumaghim, J. L. (2008). Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorganic Chemistry, 47, 6153–6161.PubMedGoogle Scholar
  182. 182.
    Lopes, G. K. B., Schulman, H. M., & Hermes-Lima, M. (1999). Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochimica et Biophysica Acta, 1472, 142–152.PubMedGoogle Scholar
  183. 183.
    Mentasti, E., Pelizzetti, E., & Saini, G. (1976). Interactions of Fe(III) with adrenaline, L-Dopa, and other catechol derivatives. Journal of Inorganic and Nuclear Chemistry, 38, 785–788.Google Scholar
  184. 184.
    Mentasti, E., & Pelizzetti, E. (1973). Reactions between iron(III) and catechol (o-dihydroxybenzene). Part I. Equilibria and kinetics of complex formation in aqueous acid solution. Journal of the Chemical Society. Dalton Transactions, 2605–2608.Google Scholar
  185. 185.
    Kennedy, J. A., & Powell, H. K. J. (1985). Aluminium(III) and iron(III) 1, 2-diphenolato complexes: A potentiometric study. Australian Journal of Chemistry, 38, 659–667.Google Scholar
  186. 186.
    de Souza, R. F. V., Sussuchi, E. M., & De Giovani, W. F. (2003). Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synthesis and Reactivity in Inorganic and Metal-Organic Chem, 33, 1125–1144.Google Scholar
  187. 187.
    Escandar, G. M., & Sala, L. F. (1991). Complexing behavior of rutin and quercetin. Canadian Journal of Chemistry, 69, 1994–2001.Google Scholar
  188. 188.
    van Acker, S. A. B. E., van Balen, G. P., van den Berg, D.-J., Bast, A., & van der Vijgh, W. J. F. (1998). Influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology, 56, 935–943.PubMedGoogle Scholar
  189. 189.
    Sugihara, N., Arakawa, T., Ohnishi, M., & Furuno, K. (1999). Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radical Biology and Medicine, 27, 1313–1323.PubMedGoogle Scholar
  190. 190.
    Sugihara, N., Ohnishi, M., Imamura, M., & Furuno, K. (2001). Differences in antioxidative efficiency of catechins in various metal-induced lipid peroxidations in cultured hepatocytes. Journal of Health Science, 47, 99–106.Google Scholar
  191. 191.
    Morel, I., Lescoat, G., Cogrel, P., Sergent, O., Pasdeloup, N., Brissot, P., et al. (1993). Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochemical Pharmacology, 45, 13–19.PubMedGoogle Scholar
  192. 192.
    Morel, I., Lescoat, G., Cillard, P., & Cillard, J. (1994). Role of flavonoids and iron chelation in antioxidant action. Methods in Enzymology, 234, 437–443.PubMedGoogle Scholar
  193. 193.
    Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., et al. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416, 123–129.PubMedGoogle Scholar
  194. 194.
    Anghileri, L. J., & Thouvenot, P. (2000). Natural polyphenols–iron interaction. Biological Trace Element Research, 73, 251–258.PubMedGoogle Scholar
  195. 195.
    Sestili, P., Guidarelli, A., Dacha, M., & Cantoni, O. (1998). Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: Free radical scavenging versus iron chelating mechanism. Free Radical Biology and Medicine, 25, 196–200.PubMedGoogle Scholar
  196. 196.
    Sestili, P., Diamantini, G., Bedini, A., Cerioni, L., Tommasini, I., Tarzia, G., et al. (2002). Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity by tert-butylhydroperoxide via an iron-chelating mechanism. The Biochemical Journal, 364, 121–128.PubMedGoogle Scholar
  197. 197.
    Melidou, M., Riganakos, K., & Galaris, D. (2005). Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radical Biology and Medicine, 39, 1591–1600.PubMedGoogle Scholar
  198. 198.
    Boato, F., Wortley, G. M., Liu, R. H., & Glahn, R. P. (2002). Red grape juice inhibits iron availability: Application of an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry, 50, 6935–6938.PubMedGoogle Scholar
  199. 199.
    Matuschek, E., & Svanberg, U. (2002). Oxidation of polyphenols and the effect on in vitro iron accessibility in a model food system. Journal of Food Science, 67, 420–424.Google Scholar
  200. 200.
    Matuschek, E., Towo, E., & Svanberg, U. (2001). Oxidation of polyphenols in phytate-reduced high-tannin cereals: Effect on different phenolic groups and on in vitro accessible iron. Journal of Agricultural and Food Chemistry, 49, 5630–5638.PubMedGoogle Scholar
  201. 201.
    Gaffney, S., Williams, V., Flynn, P., Carlino, R., Mowry, C., Dierenfeld, E., et al. (2004). Tannin/polyphenol effects on iron solubilization in vitro. Bios, 75, 43–52.Google Scholar
  202. 202.
    Brown, R., Klein, A., & Hurrell, R. F. (1989). Effect of polyphenols on iron bioavailability in rats. Special Publication (Royal Society of Chemistry), 72, 152–154.Google Scholar
  203. 203.
    Das, P., Raghuramulu, N., & Rao, K. C. (2003). Effect of organic acids and polyphenols on in vitro available iron from foods. Journal of Food Science and Technology, 40, 677–681.Google Scholar
  204. 204.
    Tuntawiroon, M., Sritongkul, N., Brune, M., Rossander-Hulten, L., Pleehachinda, R., Suwanik, R., et al. (1991). Dose-dependent inhibitory effect of phenolic compounds in foods on nonheme-iron absorption in men. The American Journal of Clinical Nutrition, 53, 554–557.PubMedGoogle Scholar
  205. 205.
    Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81, 230S–242S.PubMedGoogle Scholar
  206. 206.
    Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81, 243S–255S.PubMedGoogle Scholar
  207. 207.
    Kuo, S.-M., Leavitt, P. S., & Lin, C.-P. (1998). Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biological Trace Element Research, 62, 135–153.PubMedGoogle Scholar
  208. 208.
    Davis, S. R., & Cousins, R. J. (2000). Metallothionein expression in animals: A physiological perspective on function. The Journal of Nutrition, 130, 1085–1088.PubMedGoogle Scholar
  209. 209.
    Riggio, M., Filosa, S., Parisi, E., & Scudiero, R. (2003). Changes in zinc, copper and metallothionein contents during oocyte growth and early development of the teleost Danio rerio (zebrafish). Comparitive Biochemistry and Physiology C. Comparitive Pharmacology and Toxicology, 135, 191–196.Google Scholar
  210. 210.
    Eiichi, T., Shin-Ichi, O., Kumiko, I., Akira, N., Yoshihisa, I., & Takashi, S. (2007). Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology, 229, 33–41.Google Scholar
  211. 211.
    Rachmilewitz, E. A., Lubin, B. H., & Shohet, S. B. (1976). Lipid membrane peroxidation in β-thalassemia major. Blood, 47, 495–505.PubMedGoogle Scholar
  212. 212.
    Hebbel, R. P., Eaton, J. W., Balasingam, M., & Steinber, M. H. (1982). Spontaneous oxygen radical generation by sickle erythrocytes. The Journal of Clinical Investigation, 70, 1253–1259.PubMedGoogle Scholar
  213. 213.
    Scott, M. D., van den Berg, J. J. M., Repka, T., Rouyer-Fessard, P., Hebbel, R. P., Beuzard, Y., et al. (1993). Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β-thalassemic erythrocytes. The Journal of Clinical Investigation, 91, 1706–1712.PubMedGoogle Scholar
  214. 214.
    Vives Corrons, J. L., Pujades, M. A., Miguel-Garcia, A., Miguael-Sosa, A., Cambiazzo, S., Dibarrart, M. T., et al. (1995). Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. European Journal of Haematology, 55, 327–331.PubMedCrossRefGoogle Scholar
  215. 215.
    Grinberg, L. N., Newmark, H., Kitrossky, N., Rahamim, E., Chevion, M., & Rachmilewitz, E. A. (1997). Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochemical Pharmacology, 54, 973–978.PubMedGoogle Scholar
  216. 216.
    Srichairatanakool, S., Ounjaijean, S., Thephinlap, C., Khansuwan, U., Phisalpong, C., & Fucharoen, S. (2006). Iron-chelating and free-radical scavenging activities of microwave processed green tea in iron overload. Hemoglobin, 30, 311–327.PubMedGoogle Scholar
  217. 217.
    Thephinlap, C., Ounjaijean, S., Khansuwan, U., Fucharoen, S., Porter, J. B., & Srichairatanakool, S. (2007). Epigallocatechin-3-gallate and epicatechin-3-gallate from green tea decrease plasma non-transferrin bound iron and erythrocyte oxidative stress. Medicinal Chemistry, 3, 289–296.PubMedGoogle Scholar
  218. 218.
    Sofic, E., Paulus, W., Jellinger, K., Riederer, P., & Youdim, M. B. H. (1991). Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. Journal of Neurochemistry, 56, 978–982.PubMedGoogle Scholar
  219. 219.
    Atwood, C. S., Obrenovich, M. E., Liu, T., Chan, H., Perry, G., Smith, M. A., et al. (2003). Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 43, 1–16.PubMedGoogle Scholar
  220. 220.
    Turnbull, S., Tabner, B. J., El-Agnaf, O. M. A., Moore, S., Davies, Y., & Allsop, D. (2001). α-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine, 30, 1163–1170.PubMedGoogle Scholar
  221. 221.
    Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000). The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. The Journal of Neuroscience, 20, 6048–6054.PubMedGoogle Scholar
  222. 222.
    Singh, M., Arseneault, M., Sanderson, T., Murthy, V., & Ramassamy, C. (2008). Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. Journal of Agricultural and Food Chemistry, 56, 4855–4873.PubMedGoogle Scholar
  223. 223.
    Pan, T., Jankovic, J., & Le, W. (2003). Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs and Aging, 20, 711–721.PubMedGoogle Scholar
  224. 224.
    Mandel, S. A., Avramovich-Tiorsh, Y., Reznichenko, L., Zheng, H., Weinreb, O., Amit, T., et al. (2005). Multifunctional activities of green tea catechins in neuroprotection. Neurosignals, 14, 46–60.PubMedGoogle Scholar
  225. 225.
    Bush, A. I. (2003). The metallobiology of Alzheimer’s disease. Trends in Neurosciences, 26, 207–214.PubMedGoogle Scholar
  226. 226.
    Mandel, S. A., Amit, T., Reznichenko, L., Weinreb, O., & Youdim, M. B. H. (2006). Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Molecular Nutrition and Food Research, 50, 229–234.PubMedGoogle Scholar
  227. 227.
    Guo, Q., Zhao, B., Li, M., Shen, S., & Xin, W. (1996). Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochimica et Biophysica Acta, 1304, 210–222.PubMedGoogle Scholar
  228. 228.
    Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. Journal of Neurochemistry, 87, 172–181.PubMedGoogle Scholar
  229. 229.
    Levites, Y., Amit, T., Mandel, S., & Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB Journal, 17, 952–954.PubMedGoogle Scholar
  230. 230.
    Baum, L., & Ng, A. (2004). Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. Journal of Alzheimer’s Disease, 6, 367–377.PubMedGoogle Scholar
  231. 231.
    Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21, 8370–8377.PubMedGoogle Scholar
  232. 232.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.PubMedGoogle Scholar
  233. 233.
    Oboh, G., & Rocha, J. B. T. (2007). Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicum pubescens). Journal of Food Biochemistry, 31, 456–473.Google Scholar
  234. 234.
    Hermes-Lima, M., Wang, E. M., Schulman, H. M., Storrey, K. B., & Ponka, P. (1994). Deoxyribose degradation catalyzed by Fe(III)EDTA: Kinetic aspects and potential usefulness for submicromolar iron measurements. Molecular and Cellular Biochemistry, 137, 65–73.PubMedGoogle Scholar
  235. 235.
    Winterbourn, C. C. (1987). The ability of scavengers to distinguish OH production in the iron-catalyzed Haber–Weiss reaction: Comparison of four assays for OH. Free Radical Biology and Medicine, 3, 33–39.PubMedGoogle Scholar
  236. 236.
    Romanová, D., Vachálková, A., Cipák, L., Ovesná, Z., & Rauko, P. (2001). Study of antioxidant effect of apigenin, luteolin, and quercetin by DNA protective method. Neoplasma, 48, 104–107.PubMedGoogle Scholar
  237. 237.
    Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., & Becana, M. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22, 861–870.PubMedGoogle Scholar
  238. 238.
    Zhao, C., Dodin, G., Yuan, C., Chen, H., Zheng, R., Jia, Z., et al. (2005). “In vitro” protection of DNA from Fenton reaction by plant polyphenol verbascoside. Biochimica et Biophysica Acta, 1723, 114–123.PubMedGoogle Scholar
  239. 239.
    Web site: “Green tea extract in treating patients with stage 00166330, stage I, or stage II chronic lymphocytic leukemia”. Accessed June 00166326, 00162008.
  240. 240.
    Cheng, I. F., & Breen, K. (2000). On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. BioMetals, 13, 77–83.PubMedGoogle Scholar
  241. 241.
    Jovanovic, S. V., Steenken, S., Hara, Y., & Simic, M. G. (1996). Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? Journal of the Chemical Society. Perkin Transactions, 2, 2497–2504.Google Scholar
  242. 242.
    Arora, A., Nair, M. G., & Strasburg, G. M. (1998). Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biology and Medicine, 24, 1355–1363.PubMedGoogle Scholar
  243. 243.
    Khokhar, S., & Apenten, R. K. O. (2003). Iron binding characteristics of phenolic compounds: Some tentative structure–activity relations. Food Chemistry, 81, 133–140.Google Scholar
  244. 244.
    Perron, N. R., & Brumaghim, J. L. (2008). Method for predicting the antioxidant potency of polyphenol compounds, US patent pending.Google Scholar
  245. 245.
    Oviedo, C., Contreras, D., Freer, J., & Rodriguez, J. (2003). A screening method for detecting iron reducing wood-rot fungi. Biotechnology Letters, 25, 891–893.PubMedGoogle Scholar
  246. 246.
    Stadler, R. H., Richoz, J., Turesky, R. J., Welti, D. H., & Fay, L. B. (1996). Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations. Free Radical Research, 24, 225–240.PubMedGoogle Scholar
  247. 247.
    Contreras, D., Rodríguez, J., Freer, J., Schwederski, B., & Kaim, W. (2007). Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: Implications for wood biodegradation. Journal of Biological Inorganic Chemistry, 12, 1055–1061.PubMedGoogle Scholar
  248. 248.
    Paszczynski, A., Crawford, R., Funk, D., & Goodell, B. (1999). De novo synthesis of 4, 5-dimethoxycatechol and 2, 5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Applied and Environmental Microbiology, 65, 674–679.PubMedGoogle Scholar
  249. 249.
    Kennedy, J. A., & Powell, H. K. J. (1985). Polyphenol interactions with aluminium(III) and iron(III): Their possible involvement in the podalization process. Australian Journal of Chemistry, 38, 879–888.Google Scholar
  250. 250.
    Kerem, Z., Jensen, K. A., & Hammel, K. E. (1999). Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum tradbeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Letters, 446, 49–54.PubMedGoogle Scholar
  251. 251.
    Wang, W., & Gao, P. J. (2003). Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose. Journal of Biotechnology, 101, 119–130.PubMedGoogle Scholar
  252. 252.
    Richards, M. P., Lee, C.-H., & Reed, J. D. (2005). Methods and lipophilic antioxidant compositions to inhibit lipid oxidation in food products. US patent 2005175762.Google Scholar
  253. 253.
    Furukawa, J., Shibuta, T., & Takamine, K. (2003). Food additives for improving shelf life. Japan patent 2003088345.Google Scholar
  254. 254.
    Richards, G. N. (1999). Polyphenol-containing wood extract as antibacterial for food. US patent 19970924.Google Scholar
  255. 255.
    Schur, J. P. (1998). Preservative for foods and cosmetics. Germany patent 97-19726429 19970623.Google Scholar
  256. 256.
    Levy, M.-C., & Andry, M.-C. (1995). Microcapsules with walls made of cross-linked plant polyphenols, for foods, pharmaceuticals or cosmetics. PCT Int. Appl. patent 94-1146 19940202.Google Scholar
  257. 257.
    Hara, M., & Ishigami, T. (1990). Complex of tea polyphenols and protein for uses in medicine and food industries. Japan patent 02202900.Google Scholar
  258. 258.
    Mai, J., Chambers, L. J., & McDonald, R. E. (1985). Tea extract used for food preservation. Brit. UK Pat. Appl. patent 2151123.Google Scholar
  259. 259.
    Reddan, J. R., Giblin, F. J., Sevilla, M., Padgaonkar, V., Dziedzic, D. C., Leverenz, V. R., et al. (2003). Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Experimental Eye Research, 76, 49–59.PubMedGoogle Scholar
  260. 260.
    Mellican, R. I., Li, J., Mehansho, H., & Nielsen, S. S. (2003). The role of iron and the factors affecting off-color development of polyphenols. Journal of Agricultural and Food Chemistry, 51, 2304–2316.PubMedGoogle Scholar
  261. 261.
    Martinez, M. V., & Whitaker, J. R. (1995). The biochemistry and control of enzymatic browning. Trends in Food Science and Technology, 6, 195–200.Google Scholar
  262. 262.
    Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67, 2318–2331.PubMedGoogle Scholar
  263. 263.
    Singh, D. V., & Mukherjee, P. P. (1973). Tyrosinase, an iron(II)-containing enzyme from tea leaves. Current Science, 42, 391.Google Scholar
  264. 264.
    Hiramoto, K., Ojima, N., Sako, K., & Kikugawa, K. (1996). Effect of plant phenolics on the formation of spin-adduct of hydroxyl radical and the DNA strand breaking of hydroxyl radical. Biological and Pharmaceutical Bulletin, 19, 558–563.PubMedGoogle Scholar
  265. 265.
    Kawanishi, S., Oikawa, S., & Murata, M. (2005). Evaluation for safety of antioxidant chemopreventive agents. Antioxidants and Redox Signaling, 7, 1728–1739.PubMedGoogle Scholar
  266. 266.
    Inoue, S., Ito, K., Yamamoto, K., & Kawanishi, S. (1992). Caffeic acid causes metal-dependent damage to cellular and isolated DNA through H2O2 formation. Carcinogenesis, 13, 1497–1502.PubMedGoogle Scholar
  267. 267.
    Malaisse, W. J., Hutton, J. C., Kawazu, S., Herchuelz, A., Valverde, I., & Sener, A. (1979). The stimulus-secretion coupling of glucose-induced insulin release. Diabetologia, 16, 331–341.PubMedGoogle Scholar
  268. 268.
    Kostyuk, V. A., Potapovich, A. I., Strigunova, E. N., Kostyuk, T. V., & Afanas’ev, I. B. (2004). Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Archives of Biochemistry and Biophysics, 428, 204–208.PubMedGoogle Scholar
  269. 269.
    Afanas’ev, I. B., Ostrakhovitch, E. A., Mikhal’chik, E. V., Ibragimova, G. A., & Korkina, L. G. (2001). Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochemical Pharmacology, 61, 677–684.Google Scholar
  270. 270.
    McCord, J. M., Keele, J. B. B., & Fridovich, I. (1971). An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 68, 1024–1027.PubMedGoogle Scholar
  271. 271.
    Fenton, H. J. H. (1894). Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910.Google Scholar
  272. 272.
    Fenton, H. J. H., & Jones, H. O. (1900). The oxidation of organic acids in presence of ferrous iron. Part I. Journal of the Chemical Society, Transactions, 77, 69–76.Google Scholar
  273. 273.
    Deisseroth, A., & Dounce, A. L. (1970). Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological Reviews, 50, 319–369.PubMedGoogle Scholar
  274. 274.
    Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1972). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.Google Scholar
  275. 275.
    Mugesh, G., & du Mont, W.-W. (2001). Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: A biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry—A European Journal, 7, 1365–1370.Google Scholar
  276. 276.
    Gunther, M. R., Hanna, P. M., Mason, R. P., & Cohen, M. S. (1995). Hydroxyl radical formation from cuprous ion and hydrogen peroxide: A spin-trapping study. Archives of Biochemistry and Biophysics, 316, 515–522.PubMedGoogle Scholar
  277. 277.
    Kadiiska, M. B., & Mason, R. P. (2002). In vivo copper-mediated free radical production: an ESR spin-trapping study. Spectrochimica Acta. Part A: Molecular Spectroscopy, 58, 1227–1239.Google Scholar
  278. 278.
    Bhattacharya, P. K., & Patel, V. K. (1985). Effect of substitution on the catecholate ring on ternary complex stability. Proceedings of the Indiana Academy of Science (Chemical Science), 94, 495–500.Google Scholar
  279. 279.
    Blanco, C. A., & Hynes, M. J. (1992). Catalysis of the deprotonation of β-diketones during formation of the 1:1 metal complexes. Canadian Journal of Chemistry, 70, 2285–2289.Google Scholar
  280. 280.
    Esparza, I., Salinas, I., Santamaria, C., Garcia-Mina, J. M., & Fernandez, J. M. (2005). Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Analytica Chimica Acta, 543, 267–274.Google Scholar
  281. 281.
    Mahal, H. S., Kapoor, S., Satpati, A. K., & Mukherjee, T. (2005). Radical scavenging and catalytic activity of metal–phenolic complexes. The Journal of Physical Chemistry B, 109, 24197–24202.PubMedGoogle Scholar
  282. 282.
    Bendini, A., Cerretani, L., Vecchi, S., Carrasco-Pancorbo, A., & Lercker, G. (2006). Protective effects of extra virgin olive oil phenolics on oxidative stability in the presence or absence of copper ions. Journal of Agricultural and Food Chemistry, 54, 4880–4887.PubMedGoogle Scholar
  283. 283.
    Andrade, R. G., Jr., Dalvi, L. T., Silva, J. J. M. C., Lopes, G. K. B., Alonso, A., & Hermes-Lima, M. (2005). The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archives of Biochemistry and Biophysics, 437, 1–9.PubMedGoogle Scholar
  284. 284.
    Perron, N. R., Chaur, M., Echegoyen, L., & Brumaghim, J. L. (2008). Antioxidant and prooxidant effects of polyphenols on copper-mediated DNA damage (submitted).Google Scholar
  285. 285.
    Li, Y., & Cao, Z. (2002). The neuroprotectant ebselen inhibits oxidative DNA damage induced by dopamine in the presence of copper ions. Neuroscience Letters, 330, 69–73.PubMedGoogle Scholar
  286. 286.
    Rahman, A., Shahabuddin, Hadi, S. M., Parish, J. H., & Ainley, K. (1989). Strand scission in DNA induced by quercetin and Cu(II): Role of Cu(I) and oxygen free radicals. Carcinogenesis, 10, 1833–1839.PubMedGoogle Scholar
  287. 287.
    Elbling, L., Weiss, R.-M., Teufelhofer, O., Uhl, M., Knasmueller, S., Schulte-Hermann, R., et al. (2005). Green tea extract and (−)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB Journal, 19, 807–809.PubMedGoogle Scholar
  288. 288.
    Lambert, J. D., Sang, S., & Yang, C. S. (2007). Possible controversy over dietary polyphenols: Benefits vs risks. Chemical Research in Toxicology, 20, 583–585.PubMedGoogle Scholar
  289. 289.
    Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.PubMedGoogle Scholar
  290. 290.
    Masella, R., Benedetto, R. D., Vari, R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry, 16, 577–586.PubMedGoogle Scholar
  291. 291.
    Yang, L., McRae, R., Henary, M. M., Patel, R., Lai, B., Vogt, S., et al. (2005). Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America, 102, 11179–11184.PubMedGoogle Scholar
  292. 292.
    Que, E. L., Domaille, D. W., & Chang, C. J. (2008). Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chemical Reviews, 108, 1517–1549.PubMedGoogle Scholar
  293. 293.
    Turnlund, J. R., Jacob, R. A., Keen, C. L., Strain, J. J., Kelley, D. S., Domek, J. M., et al. (2004). Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men. The American Journal of Clinical Nutrition, 79, 1037–1044.PubMedGoogle Scholar
  294. 294.
    Bremner, I. (1998). Manifestations of copper excess. The American Journal of Clinical Nutrition, 67, 1069S–1073S.PubMedGoogle Scholar
  295. 295.
    Koizumi, M., Fujii, J., Suzuki, K., Inoue, T., Inoue, T., Gutteridge, J. M. C., et al. (1998). A marked increase in free copper levels in the plasma and liver of LEC rats: An animal model for Wilson disease and liver cancer. Free Radical Research, 28, 441–450.PubMedGoogle Scholar
  296. 296.
    Sarkar, B. (1999). Treatment of Wilson and Menkes diseases. Chemical Reviews, 99, 2535–2544.PubMedGoogle Scholar
  297. 297.
    Heller, J., & Schwarzenbach, G. (1952). 102. Metallindikatoren V. Die eisenkomplexe der 2, 3-dioxy-naphtalin-6-sulfonsäure. Helvetica Chimica Acta, 35, 812–817.Google Scholar
  298. 298.
    Raymond, K. N., McMurry, T. J., & Garrett, T. M. (1988). Macrocyclic catechol-containing ligands. Pure and Applied Chemistry, 60, 545–548.Google Scholar
  299. 299.
    Harris, W. R., & Raymond, K. N. (1979). Ferric ion sequestering agents. 3. The spectrophotometric and potentiometric evaluation of two new enterobactin analogues: 1, 5, 9-N, N′, N′′-Tris(2, 3-dihydroxybenzoyl)-cyclotriazatridecane and 1, 3, 5-N, N′, N′′-tris(2, 3-dihydroxybenzoyl)triaminomethylbenzene. Journal of the American Chemical Society, 101, 6534–6541.Google Scholar
  300. 300.
    Engelmann, M. D., Hutcheson, R., & Cheng, I. F. (2005). Stability of ferric complexes with 3-hydroxyflavone (flavonol), 5, 7-dihyroxyflavone (chrysin), and 3′, 4′-dihydroxyflavone. Journal of Agricultural and Food Chemistry, 53, 2953–2960.PubMedGoogle Scholar
  301. 301.
    Elhabiri, M., Carrer, C., Marmolle, F., & Traboulsi, H. (2007). Complexation of iron(III) by catecholate-type polyphenols. Inorganica Chimica Acta, 360, 353–359.Google Scholar
  302. 302.
    Maqsood, Z. T., & Kazmi, S. A. (1993). Determination and comparison of stability constants, enthalpy and entropy of formation of iron(III) complexes of gallic acid and methyl ester of gallic acid. Journal of the Chemical Society of Pakistan, 15, 30–35.Google Scholar
  303. 303.
    Tsobuchi, A., Kanno, C., & Akiyama, M. (1997). Enterobactin model compounds (LYSCAMs): Iron transport to microorganisms and iron removal from transferrin. Journal of Inorganic Biochemistry, 67, 31.Google Scholar
  304. 304.
    Rodgers, S. J., Lee, C.-W., Ng, C. Y., & Raymond, K. N. (1987). Ferric ion sequestering agents. 15. Synthesis, solution chemistry, and electrochemistry of a new cationic analogue of enterobactin. Inorganic Chemistry, 26, 1622–1625.Google Scholar
  305. 305.
    Thomas, F., Beguin, C., Pierre, J.-L., & Serratrice, G. (1999). Thermodynamic and kinetic studies of the sulfonated derivative of the iron chelator TRENCAM, an analog of enterobactin. Inorganica Chimica Acta, 291, 148–157.Google Scholar
  306. 306.
    Inoue, M. B., Inoue, M., Fernando, Q., Valcic, S., & Timmermann, B. N. (2002). Potentiometric and 1H NMR studies of complexation of Al3+ with (−)-epigallocatechin gallate, a major active constituent of green tea. Journal of Inorganic Biochemistry, 88, 7–13.PubMedGoogle Scholar
  307. 307.
    Kumamoto, M., Sonda, T., Nagyama, K., & Tabata, M. (2001). Effects of pH and metal ions on antioxidative activities of catechins. Bioscience, Biotechnology, and Biochemistry, 65, 126–132.PubMedGoogle Scholar
  308. 308.
    Jovanovic, S. V., Hara, Y., Steenken, S., & Simic, M. G. (1995). Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. Journal of the American Chemical Society, 117, 9881–9888.Google Scholar
  309. 309.
    Beltrán, J. L., Sanli, N., Fonrodona, G., Barrón, D., Özkan, G., & Barbosa, J. (2003). Spectrophotometric, potentiometric and chromatographic pK a values of polyphenolic acids in water and acetonitrile-water media. Analytica Chimica Acta, 484, 253–264.Google Scholar
  310. 310.
    IUPAC. (1979). IUPAC stability constants of metal–ion complexes, part B, organic ligands. Oxford, UK: Pergamon Press.Google Scholar
  311. 311.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris.Google Scholar
  312. 312.
    Kennedy, J. A., Munro, M. H. G., Powell, H. K. J., Porter, L. J., & Foo, L. Y. (1984). The protonation reactions of catechin, epicatechin and related compounds. Australian Journal of Chemistry, 37, 885–892.Google Scholar
  313. 313.
    Herrero-Martínez, J. M., Sanmartin, M., Rosés, M., Bosch, E., & Ràfols, C. (2005). Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis, 26, 1886–1895.PubMedGoogle Scholar
  314. 314.
    Ragnar, M., Lindgren, C. T., & Nilvebrant, N.-O. (2000). pK a-values of guaiacyl and syringyl phenols related to lignin. Journal of Wood Chemistry and Technology, 20, 277–305.Google Scholar
  315. 315.
    Nordström, C.-G., Lindberg, J. J., & Karumaa, L. J. (1963). Thermodynamic ionization constants of phenolic carboxylic acids related to guaiacol. Soumen Kem B, 36B, 105–109.Google Scholar
  316. 316.
    Ermakova, M. I., Kiryushina, M. F., & Zarubin, M. Y. (1985). OH-acidity of phenols related to lignin in dimethyl sulfoxide, dioxane and their mixtures with water. Koksnes Kimija, 6, 61–64.Google Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Department of ChemistryClemson UniversityClemsonUSA

Personalised recommendations