Cell Biochemistry and Biophysics

, Volume 51, Issue 2–3, pp 97–103 | Cite as

Extremely High Frequency Electromagnetic Radiation Enforces Bacterial Effects of Inhibitors and Antibiotics

  • Hasmik Tadevosyan
  • Vitaly Kalantaryan
  • Armen Trchounian
Original Paper

Abstract

The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm2) affected the growth of Escherichia coli K12(λ) under fermentation conditions: the lowering of the growth specific rate was considerably (~2-fold) increased with exposure duration of 30–60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N′-dicyclohexylcarbodiimide (DCCD), inhibitor of H+-transporting F0F1-ATPase, on energy-dependent H+ efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F0F1-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

Keywords

Extremely high frequency electromagnetic radiation Bacterial growth and survival F0F1-ATPase, N,N′-dicyclohexylcarbodiimide Antibiotics Tetracycline and chloramphenicol 

References

  1. 1.
    Betskii, O. V., Devyatkov, N. D., & Kislov, V. V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.PubMedGoogle Scholar
  2. 2.
    Pakhomov, A. G., & Murphy, M. B. (2000). Comprehensive review of the research on biological effects of pulsed radiofrequency radiation in Russia and the former Soviet Union. In J. C. Lin (Ed.), Advances in electromagnetic fields in living system (Vol. 3, pp. 265–290). New York: Kluwer Acad. Plenum Publ.Google Scholar
  3. 3.
    Trushin, M. V. (2003). The possible role of electromagnetic fields in bacterial communication. Journal of Microbiology Immunology and Infection, 36, 153–160.Google Scholar
  4. 4.
    Matsuhashi, M., Pankrushina, A. N., Takeuchi, S., Ohshima, H., Miyoi, H., Endoh, K., et al. (1998). Production of sound waves by bacterial cells and the response of bacterial cells to sound. Journal of General and Applied Microbiology, 44, 49–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Alipov, E. D., Scheglov, V. S., Sarimov, R. M., & Belyaev, I. Ya. (2003). Cell-density dependent effects of low-dose ionizing radiation on E. coli cells. Radiation Biology and Radioecology, 43, 167–171.Google Scholar
  6. 6.
    Belyaev, I. Y., Scheglov, V. S., Alipov, Y. D., & Radko, S. P. (1993). Regularities of separate and combined effects of circularly polarized millimeter waves on E coli cells at different phases of culture growth. Bioelectrochemistry and Bioenergetics, 31, 49–63.CrossRefGoogle Scholar
  7. 7.
    Gub, N. M., Luneva, I. O., Denisova, S. N., & Ostrovsky, N. V. (1995). In Millimeter waves in medicine and biology. 10th Russian Symp. with intern. participation. Moscow, p. 96 (in Russian).Google Scholar
  8. 8.
    Bulgakova, V. G., Grushina, V. A., Orlova, T. I., Petrykina, Z. M., Polin, A. N., Noks, P. P., et al. (1996). The effect of millimeter-band radiation of non-thermal intensity on sensitivity of Staphylococcus to various antibiotics. Biophysics, 41, 1289–1293.Google Scholar
  9. 9.
    Belyaev, I. Y., Scheglov, V. S., Alipov, Y. D., & Listsov, V. N. (1996). Resonance effect of millimeter waves in the power range from 10–19 to 3 × 10−3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics, 17, 312–321.PubMedCrossRefGoogle Scholar
  10. 10.
    Trchounian, A., Ogandzhanyan, E., Sarkisyan, E., Gonyan, S., Oganesyan, A., & Oganesyan, S. (2001). Membranotropic effects of electromagnetic radiation of extremely high frequency in Escherichia coli. Biophysics, 46, 69–76.Google Scholar
  11. 11.
    Scheglov, V. S., Alipov, E. D., & Belyaev, I. Ya. (2002). Cell-to-cell communication in response of E coli cells at different phases pf growth to low-intensity microwaves. Biochimica et Biophysica Acta, 1572, 101–106.Google Scholar
  12. 12.
    Isakhanyan, V., & Trchounian, A. (2005). Indirect and repeated electromagnetic irradiation with extremely high frequency of bacteria Escherichia coli. Biophysics, 50, 604–606.Google Scholar
  13. 13.
    Novoselova, E. G., Glushkova, O. V., Sinotova, O. A., & Fesenko, E. E. (2005). Stress response of the cell to exposure to ultra-weak electromagnetic radiation. Dokladi of Russian Academy of Sciences, 401, 117–119. (in Russian).Google Scholar
  14. 14.
    Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2006). Direct and mediated effects of the extremely high frequency coherent electromagnetic radiation (millimeter waves) with low intensity on bacteria. In Biological effects of electromagnetic fields. Proc. 4 th Intern. Workshop, Crete (Greece), pp. 1307–1314.Google Scholar
  15. 15.
    Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2007). The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of Escherichia coli and the role of medium pH. Biophysics, 52, 893–898.Google Scholar
  16. 16.
    Belyaev, I. (2005). Non-thermal biological effects of microwaves. Microwave Reviews, 11, 13–29.Google Scholar
  17. 17.
    Fesenko, E. E., Geletyuk, V. I., Kazachenko, V. N., & Chemeris, N. K. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366, 49–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Belyaev, I. Ya., Alipov, Y. D., Scheglov, V. S., & Lystsov, V. N. (1992). Resonance effect of microwaves on the genome conformational state of E. coli cells. Zeitschrift Fur Naturforschung, 47, 621–627.PubMedGoogle Scholar
  19. 19.
    Trchounian, A., Ohandjanyan, E., Bagramyan, K., Vardanyan, V., Zakharyan, E., Vassilian, A., et al. (1998). Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Bioscience Reports, 18, 143–154.PubMedCrossRefGoogle Scholar
  20. 20.
    Markarian, S. A., Poladyan, A. A., Kirakosyan, G. R., Trchounian, A. A., & Bagramyan, K. A. (2002). Effect of diethylsulphoxide on growth, survival and ion exchange of Escherichia coli. Letters in Applied Microbiology, 34, 417–421.PubMedCrossRefGoogle Scholar
  21. 21.
    Konings, W. N., & Kaback, H. R. (1973). Anaerobic transport in Escherichia coli membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 70, 3376–3381.PubMedCrossRefGoogle Scholar
  22. 22.
    Bagramyan, K., Mnatsakanyan, N., & Trchounian, A. (2003). Formate increases the F0F1-ATPase activity in Escherichia coli membrane vesicles. Biochemical and Biophysical Research Communications, 306, 361–365.PubMedCrossRefGoogle Scholar
  23. 23.
    Zakharyan, E., & Trchounian, A. (2001). K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS (Federation of European Microbiological Societies) Microbiology Letters, 204, 61–64.CrossRefGoogle Scholar
  24. 24.
    Akopyan, K., & Trchounian, A. (2006). Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress. Cell Biochemistry and Biophysics, 46, 201–208.PubMedCrossRefGoogle Scholar
  25. 25.
    Trchounian, A. A., & Vassilian, A. V. (1994). Relationship between the F0F1 ATPase and the K+ transport system within the membrane of anaerobically grown Escherichia coli. N,N’-dicyclohexylcarbodiimide-sensitive ATPase activity in trk mutants. Journal of Bioenergetics and Biomembranes, 26, 563–571.PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  27. 27.
    Nakamoto, R. K., Ketchum, C. J., Kuo, P. H., Peskova, Y. B., & Al-Shawi, M. K. (2000). Molecular mechanisms of rotational coupling in the F0F1 ATP synthase. Biochimica et Biophysica Acta, 1458, 289–299.PubMedCrossRefGoogle Scholar
  28. 28.
    Azzi, A., Casey, R. P., & Nalecz, M. J. (1984). The effect of N,N′-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochimica et Biophysica Acta, 768, 209–226.PubMedGoogle Scholar
  29. 29.
    Martirosov, S. M., & Trchounian, A. A. (1983). An electrochemical study of energy-dependent potassium accumulation in E. coli. 10. Operation of H+-K+-exchanging mechanisms in unc mutants. Bioelectrochemistry and Bioenergetics, 11, 29–36.CrossRefGoogle Scholar
  30. 30.
    Trchounian, A., Ohandjanian, E., & Vanian, P. (1994). Osmosensitivity of the 2H+/K+-exchange and the H+-F0F1-ATPase in anaerobically grown Escherichia coli. Current Microbiology, 29, 187–191.CrossRefGoogle Scholar
  31. 31.
    Trchounian, A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transpopters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochemical and Biophysical Research Communications, 315, 1051–1057.PubMedCrossRefGoogle Scholar
  32. 32.
    McMurry, L. M., Hendricks, M., & Levy, S. B. (1986). Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli. Journal of Bacteriology, 29, 681–686.Google Scholar
  33. 33.
    Thanassi, D. G., Suh, G. S. B., & Nikaido, H. (1995). Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. Journal of Bacteriology, 177, 998–1007.PubMedGoogle Scholar
  34. 34.
    Nelson, M. L., & Levy, S. B. (1999). Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrobial Agents and Chemotherapy, 43, 1719–1724.PubMedGoogle Scholar
  35. 35.
    Krulwich, T. A., Jin, J., Guffanti, A. A., & Bechhofer, H. (2001). Functions of tetracycline efflux proteins that do not involve tetracycline. Journal of Molecular Microbiology and Biotechnology, 3, 237–246.PubMedGoogle Scholar
  36. 36.
    Bellaaj, A., Mallea, M., Bollet, C., Belhadj, C., Belhadj, O., & Ben-Mahrez, K. (2002). A multiple-antibiotic resistance-independent active chloramphenicol efflux in an Escherichia coli clinical isolate. Drugs Under Experimental and Clinical Research, 28, 99–104.PubMedGoogle Scholar
  37. 37.
    Li, R. C., Lee, S. W., & Kong, C. H. (1997). Correlation between bactericidal activity and post-antibiotic effect for five antibiotics with different mechanisms of action. Journal of Antimicrobial Chemotherapy, 40, 39–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Kuo, P. H., Ketchum, C. J., & Nakamoto, R. K. (1998). Stability and functionality of cysteine-less F0F1-ATP synthase from Escherichia coli. FEBS Letters, 426, 217–220.PubMedCrossRefGoogle Scholar
  39. 39.
    Schemidt, R. A., Qu, J., Williams, J. R., & Brusilow, W. S. (1998). Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. Journal of Bacteriology, 180, 3205–3208.PubMedGoogle Scholar
  40. 40.
    Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R. K., & Trchounian, A. (2002). F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Bioscience Reports, 22, 421–430.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu, C., Lin, X., Ren, H., Zhang, Y., Wang, S., & Peng, X. (2006). Analysis of outer membrane roteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics, 6, 462–473.PubMedCrossRefGoogle Scholar
  42. 42.
    Cambau, E., & Gutmann, L. (1993) Mechanisms of resistance to quinolones. Drugs, 45(Suppl. 3), 15–23.Google Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  • Hasmik Tadevosyan
    • 1
  • Vitaly Kalantaryan
    • 2
  • Armen Trchounian
    • 1
  1. 1.Biology Faculty, Department of BiophysicsYerevan State UniversityYerevanArmenia
  2. 2.Radiophysics Faculty, Department of High Frequency Radiophysics and TelecommunicationYerevan State UniversityYerevanArmenia

Personalised recommendations