Skip to main content
Log in

Parvalbumin Isoforms for Enhancing Cardiac Diastolic Function

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diastolic heart failure (DHF), characterized by depressed myocardial relaxation performance and poor ventricular filling, is a distinct form of heart failure accounting for nearly half of the heart failure patients with otherwise normal systolic performance. Defective intracellular calcium (Ca2+) cycling is an important mechanism underlying impaired relaxation in DHF. Recently, genetic manipulation of Ca2+ handling proteins in cardiac myocytes has been explored for its potential therapeutic application in DHF. Specifically, ectopic expression of the skeletal muscle Ca2+ binding protein parvalbumin (Parv) has been shown to accelerate myocardial relaxation in vitro and in vivo. Parv acts as a unique “delayed” Ca2+ buffer during diastole by promoting Ca2+ transient decay and sequestration and corrects diastolic dysfunction in an energy-independent manner. This brief review summarizes the rationale and development of Parv gene transfer approaches for DHF, and in particular, discusses the divergent effects of Parv isoforms on cardiac myocyte Ca2+ handling and contractile function with the long-range goal of alleviating diastolic dysfunction in DHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Henrotte, J. G. (1952). A crystalline constituent from myogen of carp muscles. Nature, 169, 968–969.

    Article  PubMed  CAS  Google Scholar 

  2. Kawasaki, H., Nakayama, S., & Kretsinger, R. H. (1998). Classification and evolution of EF-hand proteins. Biometals, 11, 277–295.

    Article  PubMed  CAS  Google Scholar 

  3. Pauls, T. L., Cox, J. A., & Berchtold, M. W. (1996). The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: New structural and functional findings. Biochimica et Biophysica Acta, 1306, 39–54.

    PubMed  Google Scholar 

  4. Heizmann, C. W. (1984). Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia, 40, 910–921.

    Article  PubMed  CAS  Google Scholar 

  5. Schwaller, B., Meyer, M., & Schiffmann, S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum, 1, 241–258.

    Article  PubMed  CAS  Google Scholar 

  6. Hou, T. T., Johnson, J. D., & Rall, J. A. (1991). Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. Journal of Physiology, 441, 285–304.

    PubMed  CAS  Google Scholar 

  7. Heizmann, C. W., Berchtold, M. W., & Rowlerson, A. M. (1982). Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proceedings of the National Academy of Sciences of the United States of America, 79, 7243–7247.

    Article  PubMed  CAS  Google Scholar 

  8. Hou, T. T., Johnson, J. D., & Rall, J. A. (1992). Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. Journal of Physiology, 449, 399–410.

    PubMed  CAS  Google Scholar 

  9. Muntener, M., Kaser, L., Weber, J., & Berchtold, M. W. (1995). Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA. Proceedings of the National Academy of Sciences of the United States of America, 92, 6504–6508.

    Article  PubMed  CAS  Google Scholar 

  10. Schwaller, B., Dick, J., Dhoot, G., Carroll, S., Vrbova, G., Nicotera, P., et al. (1999). Prolonged contraction–relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. American Journal of Physiology, 276, C395–C403.

    PubMed  CAS  Google Scholar 

  11. Gifford, J. L., Walsh, M. P., & Vogel, H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. The Biochemical Journal, 405, 199–221.

    Article  PubMed  CAS  Google Scholar 

  12. Berchtold, M. W., Brinkmeier, H., & Muntener, M. (2000). Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiological Reviews, 80, 1215–1265.

    PubMed  CAS  Google Scholar 

  13. Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415, 198–205.

    Article  PubMed  CAS  Google Scholar 

  14. Wahr, P. A., Michele, D. E., & Metzger, J. M. (1999). Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 96, 11982–11985.

    Article  PubMed  CAS  Google Scholar 

  15. Coutu, P., Bennett, C. N., Favre, E. G., Day, S. M., & Metzger, J. M. (2004). Parvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked α-tropomyosin mutations. Circulation Research, 94, 1235–1241.

    Article  PubMed  CAS  Google Scholar 

  16. Hirsch, J. C., Borton, A. R., Albayya, F. P., Russell, M. W., Ohye, R. G., & Metzger, J. M. (2004). Comparative analysis of parvalbumin and SERCA2a cardiac myocyte gene transfer in a large animal model of diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2314–H2321.

    Article  PubMed  CAS  Google Scholar 

  17. Rodenbaugh, D. W., Wang, W., Davis, J., Edwards, T., Potter, J. D., & Metzger, J. M. (2007). Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 293, H1705–H1713.

    Article  PubMed  CAS  Google Scholar 

  18. Szatkowski, M. L., Westfall, M. V., Gomez, C. A., Wahr, P. A., Michele, D. E., DelloRusso, C., et al. (2001). In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. The Journal of Clinical Investigation, 107, 191–198.

    Article  PubMed  CAS  Google Scholar 

  19. Michele, D. E., Szatkowski, M. L., Albayya, F. P., & Metzger, J. M. (2004). Parvalbumin gene delivery improves diastolic function in the aged myocardium in vivo. Molecular Therapy, 10, 399–403.

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt, U., Zhu, X., Lebeche, D., Huq, F., Guerrero, J. L., & Hajjar, R. J. (2005). In vivo gene transfer of parvalbumin improves diastolic function in aged rat hearts. Cardiovascular Research, 66, 318–323.

    Article  PubMed  CAS  Google Scholar 

  21. Coutu, P., Hirsch, J. C., Szatkowski, M. L., & Metzger, J. M. (2003). Targeting diastolic dysfunction by genetic engineering of calcium handling proteins. Trends in Cardiovascular Medicine, 13, 63–67.

    Article  PubMed  CAS  Google Scholar 

  22. Coutu, P., & Metzger, J. M. (2002). Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: Gene transfer and mathematical modeling. Biophysical Journal, 82, 2565–2579.

    Article  PubMed  CAS  Google Scholar 

  23. Coutu, P., & Metzger, J. M. (2005). Genetic manipulation of calcium-handling proteins in cardiac myocytes. II. Mathematical modeling studies. American Journal of Physiology. Heart and Circulatory Physiology, 288, H613–H631.

    Article  PubMed  CAS  Google Scholar 

  24. Chien, K. R. (1999). Stress pathways and heart failure. Cell, 98, 555–558.

    Article  PubMed  CAS  Google Scholar 

  25. Cohn, J. N., Bristow, M. R., Chien, K. R., Colucci, W. S., Frazier, O. H., Leinwand, L. A., et al. (1997). Report of the National heart, lung, and blood institute special emphasis panel on heart failure research. Circulation, 95, 766–770.

    PubMed  CAS  Google Scholar 

  26. Owan, T. E., & Redfield, M. M. (2005). Epidemiology of diastolic heart failure. Progress in Cardiovascular Diseases, 47, 320–332.

    Article  PubMed  Google Scholar 

  27. Chinnaiyan, K. M., Alexander, D., Maddens, M., & McCullough, P. A. (2007). Curriculum in cardiology: Integrated diagnosis and management of diastolic heart failure. American Heart Journal, 153, 189–200.

    Article  PubMed  Google Scholar 

  28. Kitzman, D. W., Gardin, J. M., Gottdiener, J. S., Arnold, A., Boineau, R., Aurigemma, G., et al. (2001). Importance of heart failure with preserved systolic function in patients ≥65 years of age. CHS Research Group. Cardiovascular Health Study. American Journal of Cardiology, 87, 413–419.

    Article  PubMed  CAS  Google Scholar 

  29. Zile, M. R., & Brutsaert, D. L. (2002). New concepts in diastolic dysfunction and diastolic heart failure: Part II: Causal mechanisms and treatment. Circulation, 105, 1503–1508.

    Article  PubMed  Google Scholar 

  30. Houser, S. R., Piacentino, V., III, Mattiello, J., Weisser, J., & Gaughan, J. P. (2000). Functional properties of failing human ventricular myocytes. Trends in Cardiovascular Medicine, 10, 101–107.

    Article  PubMed  CAS  Google Scholar 

  31. Arai, M., Matsui, H., & Periasamy, M. (1994). Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circulation Research, 74, 555–564.

    PubMed  CAS  Google Scholar 

  32. Wehrens, X. H., Lehnart, S. E., & Marks, A. R. (2005). Intracellular calcium release and cardiac disease. Annual Review of Physiology, 67, 69–98.

    Article  PubMed  CAS  Google Scholar 

  33. Pieske, B., Maier, L. S., Bers, D. M., & Hasenfuss, G. (1999). Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circulation Research, 85, 38–46.

    PubMed  CAS  Google Scholar 

  34. Minamisawa, S., Sato, Y., & Cho, M. C. (2004). Calcium cycling proteins in heart failure, cardiomyopathy and arrhythmias. Experimental and Molecular Medicine, 36, 193–203.

    PubMed  CAS  Google Scholar 

  35. Molkentin, J. D. (2005). Locating heart failure. Nature Medicine, 11, 1284–1285.

    Article  PubMed  CAS  Google Scholar 

  36. del Monte, F., & Hajjar, R. J. (2003). Targeting calcium cycling proteins in heart failure through gene transfer. Journal of Physiology, 546, 49–61.

    Article  PubMed  CAS  Google Scholar 

  37. Hoshijima, M. (2005). Gene therapy targeted at calcium handling as an approach to the treatment of heart failure. Pharmacology and Therapeutics, 105, 211–228.

    Article  PubMed  CAS  Google Scholar 

  38. Most, P., Pleger, S. T., Volkers, M., Heidt, B., Boerries, M., Weichenhan, D., et al. (2004). Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. Journal of Clinical Investigation, 114, 1550–1563.

    PubMed  CAS  Google Scholar 

  39. Minamisawa, S., Hoshijima, M., Chu, G., Ward, C. A., Frank, K., Gu, Y., et al. (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell, 99, 313–322.

    Article  PubMed  CAS  Google Scholar 

  40. Terracciano, C. M., Souza, A. I., Philipson, K. D., & MacLeod, K. T. (1998). Na+–Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+–Ca2+ exchanger. Journal of Physiology, 512(Pt 3), 651–667.

    Article  PubMed  CAS  Google Scholar 

  41. Schillinger, W., Janssen, P. M., Emami, S., Henderson, S. A., Ross, R. S., Teucher, N., et al. (2000). Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na+–Ca2+ exchanger. Circulation Research, 87, 581–587.

    PubMed  CAS  Google Scholar 

  42. Pogwizd, S. M., & Bers, D. M. (2002). Na/Ca exchange in heart failure: Contractile dysfunction and arrhythmogenesis. Annals of New York Academy of Sciences, 976, 454–465.

    CAS  Google Scholar 

  43. Suarez, J., Belke, D. D., Gloss, B., Dieterle, T., McDonough, P. M., Kim, Y. K., et al. (2004). In vivo adenoviral transfer of sorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy. American Journal of Physiology. Heart and Circulatory Physiology, 286, H68–H75.

    Article  PubMed  CAS  Google Scholar 

  44. Seidler, T., Miller, S. L., Loughrey, C. M., Kania, A., Burow, A., Kettlewell, S., et al. (2003). Effects of adenovirus-mediated sorcin overexpression on excitation–contraction coupling in isolated rabbit cardiomyocytes. Circulation Research, 93, 132–139.

    Article  PubMed  CAS  Google Scholar 

  45. del Monte, F., Harding, S. E., Schmidt, U., Matsui, T., Kang, Z. B., Dec, G. W., et al. (1999). Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation, 100, 2308–2311.

    Google Scholar 

  46. Neubauer, S. (2007). The failing heart—an engine out of fuel. The New England Journal of Medicine, 356, 1140–1151.

    Article  PubMed  Google Scholar 

  47. Huq, F., Lebeche, D., Iyer, V., Liao, R., & Hajjar, R. J. (2004). Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes. Circulation, 109, 2780–2785.

    Article  PubMed  CAS  Google Scholar 

  48. Sakata, S., Lebeche, D., Sakata, N., Sakata, Y., Chemaly, E. R., Liang, L. F., et al. (2007). Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. Journal of Molecular and Cellular Cardiology, 42, 852–861.

    Article  PubMed  CAS  Google Scholar 

  49. Goodman, M., & Pechere, J. F. (1977). The evolution of muscular parvalbumins investigated by the maximum parsimony method. Journal of Molecular Evolution, 9, 131–158.

    Article  PubMed  CAS  Google Scholar 

  50. Eberhard, M., & Erne, P. (1994). Calcium and magnesium binding to rat parvalbumin. European Journal of Biochemistry, 222, 21–26.

    Article  PubMed  CAS  Google Scholar 

  51. Moeschler, H. J., Schaer, J. J., & Cox, J. A. (1980). A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin. European Journal of Biochemistry, 111, 73–78.

    Article  PubMed  CAS  Google Scholar 

  52. del Monte, F., Lebeche, D., Guerrero, J. L., Tsuji, T., Doye, A. A., Gwathmey, J. K., et al. (2004). Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proceedings of the National Academy of Sciences of the United States of America, 101, 5622–5627.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Metzger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Metzger, J.M. Parvalbumin Isoforms for Enhancing Cardiac Diastolic Function. Cell Biochem Biophys 51, 1–8 (2008). https://doi.org/10.1007/s12013-008-9011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9011-x

Keywords

Navigation