Skip to main content

Advertisement

Log in

Self-organized Polymer Aggregates with a Biomimetic Hierarchical Structure and its Superhydrophobic Effect

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Nature always gives us inspirations to fabricate functional materials by mimicking the structure design of biomaterials. In this article, we report that polymeric aggregates with morphology similar to the papilla on lotus leaf can be self-organized in the polymer solution by adding 16 wt% water into 5 mg/ml polycarbonate solution in N, N′-dimethylformamide. The hierarchically structured aggregates at micro- and nano-scale alone show superhydrophobic effect without the need of modification with low surface energy compound. Small amount of liquid can be wrapped by the aggregates to form the so-called liquid marble. Influence of the amount of water added into the solution on the morphology of resultant polymer aggregates was investigated. By using the hierarchical aggregates as the surface building blocks, superhydrophobic coating with a static water contact angle larger than 160° and sliding angle less than 5° (for a water drop of 5 μl) was formed. Other solutions, like acid, basic and blood plasma are also repelled on the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gu Z., Uetsuka H., Takahashi K., Nakajima R., Onishi H., Fujishima A., & Sato O. (2003). Structural color and the lotus effect. Angewandte Chemie (International Ed. in English), 42, 894–897.

    Article  CAS  Google Scholar 

  2. Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A., & Shapoval, S. Y. (2003). Microfabricated adhesive mimicking gecko foot-hai. Nature Materials, 2, 461–463.

    Article  PubMed  CAS  Google Scholar 

  3. Zhai, L., Berg, M. C., Cebeci, F. C., Kim, Y., Milwid, J. M., Rubner, M. F., & Cohen, R. E. (2006). Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 6, 1213–1217.

    Article  PubMed  CAS  Google Scholar 

  4. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.

    Article  CAS  Google Scholar 

  5. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., & Zhu, D. (2002). Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14, 1857–1860.

    Article  CAS  Google Scholar 

  6. Wenzel, R. N. (1936). Resistance of solid surface to wetting by water. Industrial & Engineering Chemistry Research, 28, 988–994.

    Article  CAS  Google Scholar 

  7. Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transitions of the Faraday Society, 40, 546–561.

    Article  CAS  Google Scholar 

  8. Lafuma, A., & Quéré, D. (2003). Superhydrophobic states. Nature Materials, 2, 457–460.

    Article  PubMed  CAS  Google Scholar 

  9. Wier, K. A., & McCarthy, T. J. (2006). Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir, 22, 2433–2436.

    Article  PubMed  CAS  Google Scholar 

  10. Nakajima, A., Hashimoto, K., & Watanabe, T. (2001). Recent studies on superhydrophobic films. Monatshefte für Chemie, 132, 31–41.

    CAS  Google Scholar 

  11. Blossey, R. (2003). Self-cleaning surfaces-virtual realities. Nature Materials, 2, 301–306.

    Article  PubMed  CAS  Google Scholar 

  12. Quéré, D. (2005). Non-sticking drops. Reports on Progress in Physics, 68, 2495–2532.

    Article  Google Scholar 

  13. Ma, M., & Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion Colloid Surface Science, 11, 193–202.

    Article  CAS  Google Scholar 

  14. Gao, L., & McCarthy, T. J. (2006). The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 22, 2966–2967.

    Article  PubMed  CAS  Google Scholar 

  15. Marmur, A. (2004). The lotus effect: Superhydrophobicity and metastability. Langmuir, 20, 3517–3519.

    Article  PubMed  CAS  Google Scholar 

  16. Patankar, N. A. (2004). Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir, 20, 8209–8213.

    Article  PubMed  CAS  Google Scholar 

  17. Nosonovsky, M., & Bhushan, B. (2005). Roughness optimization for biomimetic superhydrophobic surfaces. Microsystems and Technology, 11, 535–549.

    Article  CAS  Google Scholar 

  18. Jiang, L., Zhao, Y., & Zhai, J. (2004). A lotus-leaf-like superhydrophobic surface: A porous microshere/nanofiber composite film prepared by electrohydrodynamics. Angewandte Chemie (International Ed. in English), 43, 4338–4341.

    Article  CAS  Google Scholar 

  19. Xie, Q., Fan, G., Zhao, N., Guo, X., Xu, J., Dong, J., Zhang, L., & Han, C. C. (2004). Facile creation of a bionic super-hydrophobic block copolymer surface. Advanced Materials, 16, 1830–1833.

    Article  CAS  Google Scholar 

  20. Zhao, N., Xu, J., Xie, Q., Weng, L., Guo, X., Zhang, X., & Shi, L. (2005). Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromolecular Rapid Communications, 26, 1075–1080.

    Article  CAS  Google Scholar 

  21. Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., & Li, X. (2004). Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward super-hydrophobic surface. Journal of the American Chemical Society, 126, 3064–3065.

    Article  PubMed  CAS  Google Scholar 

  22. Furstner, R., Barthlott, W., Neinhuis, C., & Walzel, P. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 21, 956–961.

    Article  PubMed  Google Scholar 

  23. Zhao, N., Weng, L., Zhang, X., Xie, Q., Zhang, X., & Xu, J. (2006). A lotus-leaf-like superhydrophobic surface prepared by solvent-induced crystallization. Chemphyschem: A European Journal of Chemical Physics and Physical chemistry, 7, 824–827.

    CAS  Google Scholar 

  24. Heiss, H. L. (1979). The classification of solvents for bis-phenol-A polycarbonate. Polymer and Engineering Science, 19, 625–637.

    Article  CAS  Google Scholar 

  25. Schorn, H., Kosfeld, R., & Hess, M. (1986). Investigation of the solution crystallization behaviour of polycarbonate. Journal of Chromatography. A, 353, 273–277.

    Article  CAS  Google Scholar 

  26. Aussillous, P., & Quéré, D. (2001). Liquid marbles. Nature, 411, 924–927.

    Article  PubMed  CAS  Google Scholar 

  27. Yan, H., Shiga, H., Ito, E., Nakagaki, T., Takagi, S., Ueda, T., & Tsujii, K. (2006). Super water-repellent surfaces with fractal structures and their potential application to biological studies. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 284–285, 490–494.

    Article  Google Scholar 

  28. Busscher, H. J., Stokroos, I., Golverdingen, J. G., & Schakenraad, J. M. (1991). Adhesion and spreading of human fibroblasts on superhydrophobic FET-Teflon. Cells and Materials, 1, 243–249.

    CAS  Google Scholar 

  29. Sun, T. L., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No platelet can adhere–Largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small, 1, 959–963.

    Article  PubMed  CAS  Google Scholar 

  30. Khorasani, M. T., & Mirzadeh, H. (2004). In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. Journal of Applied Polymer Science, 91, 2042–2047.

    Article  CAS  Google Scholar 

  31. Genzer, J., & Efimenko, K. (2006). Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling, 22, 339–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 50521302 and No. 50425312) and Innovation Project of CAS. We acknowledged Prof. Charles C. Han for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, N., Zhang, XY., Li, YF. et al. Self-organized Polymer Aggregates with a Biomimetic Hierarchical Structure and its Superhydrophobic Effect. Cell Biochem Biophys 49, 91–97 (2007). https://doi.org/10.1007/s12013-007-0044-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0044-3

Keywords

Navigation