Advertisement

Cell Biochemistry and Biophysics

, Volume 48, Issue 2–3, pp 89–95 | Cite as

PCK1 and PCK2 as candidate diabetes and obesity genes

  • Elmus G. BealeEmail author
  • Brandy J. Harvey
  • Claude Forest
Article

Abstract

The PCK1 gene (Pck1 in rodents) encodes the cytosolic isozyme of phosphoenolpyruvate carboxykinase (PEPCK-C), which is well-known for its function as a gluconeogenic enzyme in the liver and kidney. Mouse studies involving whole body and tissue-specific Pck1 knockouts as well as tissue-specific over-expression of PEPCK-C have resulted in type 2 diabetes as well as several surprising phenotypes including obesity, lipodystrophy, fatty liver, and death. These phenotypes arise from perturbations not only in gluconeogenesis but in two additional metabolic functions of PEPCK-C: (1) cataplerosis which maintains metabolic flux through the Krebs cycle by removing excess oxaloacetate, and (2) glyceroneogenesis which produces glycerol-3-phosphate as a precursor for fatty acid esterification into triglycerides. PEPCK-C catalyzes the conversion of oxaloacetate + GTP to phosphoenolpyruvate + GDP + CO2. It is in part the tissue-specificity of this simple reaction that results in the variety of phenotypes listed above. Briefly: (1) A 7-fold over-expression of PEPCK-C in the livers of mice causes excessive glucose production. (2) Mice with a whole-body knockout of Pck1 die within 2–3 days of birth, not from hypoglycemia, but probably because the Krebs cycle slows to approximately 10% of normal in the absence of cataplerosis. (3) Mice with a liver-specific knockout have an inability to remove oxaloacetate from the Krebs cycle, which leads to a fatty liver following a fast. (4) An adipose-specific knockout of Pck1 results in a fraction of the mice developing lipodystrophy due to lost glyceroneogenesis and a consequent decrease in fatty acid re-esterification. (5) Finally, disregulated over-expression of PEPCK-C in adipose tissue increases fatty acid re-esterification leading to obesity. These varied experimental phenotypes in mice have led us to postulate that abnormal production of PEPCK isozymes encoded by two PEPCK genes, PCK1 and PCK2, in humans could have similar consequences (Beale, E. G. et al. (2004). Trends in Endocrinology and Metabolism, 15, 129–135). The purpose of this review is to further explore these possibilities.

Keywords

Phosphoenolpyruvate carboxykinase Gluconeogenesis Glyceroneogenesis Cataplerosis Diabetes Obesity Fatty liver Metabolic syndrome 

References

  1. 1.
    Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry. New York, NY: W. H. Freeman and Company.Google Scholar
  2. 2.
    Beale, E. G., Hammer, R. E., Antoine, B., & Forest, C. (2004). Disregulated glyceroneogenesis: PCK1 as a candidate diabetes and obesity gene. Trends in Endocrinology and Metabolism, 15, 129–135.PubMedCrossRefGoogle Scholar
  3. 3.
    Utter, M. F., & Kolenbrander, H. M. (1972). Formation of oxalacetate by CO2 fixation of phosphoenolpyruvate. In P. D. Boyer (Ed.), The enzymes (pp. 117–168). New York: Academic Press.Google Scholar
  4. 4.
    Hanson, R. W., & Reshef, L. (1997). Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annual Review of Biochemistry, 66, 581–611.PubMedCrossRefGoogle Scholar
  5. 5.
    Tilghman, S. M., Ballard, F. J., & Hanson, R. W. (1976). Hormonal regulation of phosphoenolpyruvate carboxykinase (GTP) in mammalian tissues. In R. W. Hanson & M. A Mehlman (Eds.), Gluconeogenesis: Its regulation in mammalian species (pp. 47–91). New York: John Wiley & Sons.Google Scholar
  6. 6.
    Hanson, R. W. (2005). Metabolism in the era of molecular biology. The Journal of Biological Chemistry, 280, 1705–1715.PubMedCrossRefGoogle Scholar
  7. 7.
    Beale, E. G., Katzen, C. S., & Granner, D. K. (1981). Regulation of rat liver phosphoenolpyruvate carboxykinase (GTP) messenger ribonucleic acid activity by N6, O2’-dibutyryladenosine 3′,5′-phosphate. Biochemistry, 20, 4878–4883.PubMedCrossRefGoogle Scholar
  8. 8.
    Beale, E. G., Hartley, J. L., & Granner, D. K. (1982). N6,O2′-dibutyryl cycle AMP and glucose regulate the amount of messenger RNA coding for hepatic phosphoenolpyruvate carboxykinase (GTP). The Journal of Biological Chemistry, 257, 2022–2028.PubMedGoogle Scholar
  9. 9.
    Sasaki, K., Cripe, T. P., Koch, S. R., Andreone, T. L., Petersen, D. D., Beale, E. G., & Granner, DK. (1984). Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. The Journal of Biological Chemistry, 259, 15242–15251.PubMedGoogle Scholar
  10. 10.
    Chrapkiewicz, N. B., Beale, E. G., & Granner, D. K. (1982). Induction of the messenger ribonucleic acid coding for phosphoenolpyruvate carboxykinase in H4-II-E cells. Evidence for a nuclear effect of cyclic. AMP. The Journal of Biological Chemistry, 257, 14428–14432.PubMedGoogle Scholar
  11. 11.
    Shrago, E., Shug, A., & Elson, C. (1976). Regulation of cell metabolism by mitochondrial transport systems. In R. W. Hanson & M. A Mehlman (Eds.), Gluconeogenesis: Its regulation in mammalian species (pp. 221–238). New York: John Wiley & Sons.Google Scholar
  12. 12.
    Reshef, L., Olswang, Y., Cassuto, H., Blum, B., Croniger, C. M., Kalhan, S. C., Tilghman, S. M., & Hanson, R. W. (2003). Glyceroneogenesis and the triglyceride/fatty acid cycle. The Journal of Biological Chemistry, 278, 30413–30416.PubMedCrossRefGoogle Scholar
  13. 13.
    Beale, E. G., Hammer, R. E., Antoine, B., & Forest, C. (2002). Glyceroneogenesis comes of age. FASEB Journal, 16, 1695–1696.PubMedCrossRefGoogle Scholar
  14. 14.
    Jensen, M. D., Ekberg, K., & Landau, B. R. (2001). Lipid metabolism during fasting. American Journal of Physiology. Endocrinology & Metabology, 281, E789–E793.Google Scholar
  15. 15.
    Owen, O. E., Kalhan, S. C., & Hanson, R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. The Journal of Biological Chemistry, 277, 30409–30412.PubMedCrossRefGoogle Scholar
  16. 16.
    She, P., Shiota, M., Shelton, K. D., Chalkley, R., Postic, C., & Magnuson, M. A. (2000). Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Molecular and Cell Biology, 20, 6508–6517.CrossRefGoogle Scholar
  17. 17.
    Burgess, S. C., Hausler, N., Merritt, M., Jeffrey, F. M. H., Storey, C., Milde, A., Koshy, S., Lindner, J., Magnuson, M. A, Malloy, C. R, & Sherry, A. D. (2004). Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. The Journal of Biological Chemistry, 279, 48941–48949.PubMedCrossRefGoogle Scholar
  18. 18.
    Olswang, Y., Cohen, H., Papo, O., Cassuto, H., Croniger, C. M., Hakimi, P., Tilghman, S. M., Hanson, R. W., Reshef, L. (2002). A mutation in the peroxisome proliferator-activated receptor gamma -binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 625–630.PubMedCrossRefGoogle Scholar
  19. 19.
    Devine, J. H., Eubank, D. W., Clouthier, D. E., Tontonoz, P., Spiegelman, B. M., Hammer, R. E., & Beale, E. G. (1999). Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor γ and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo. The Journal of Biological Chemistry, 274, 13604–13612.PubMedCrossRefGoogle Scholar
  20. 20.
    Valera, A., Pujol, A., Pelegrin, M., & Bosch, F. (1994). Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 91, 9151–9154.PubMedCrossRefGoogle Scholar
  21. 21.
    Franckhauser, S., Munoz, S., Pujol, A., Casellas, A., Riu, E., Otaegui, P., Su, B., & Bosch, F. (2002). Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes, 51, 624–630.PubMedCrossRefGoogle Scholar
  22. 22.
    Vidnes, J., & Sovik, O. (1976). Gluconeogenesis in infancy and childhood. III. Deficiency of the extramitochondrial form of hepatic phosphoenolpyruvate carboxykinase in a case of persistent neonatal hypoglycaemia. Acta Paediatrica Scandinavica, 65, 307–312.PubMedGoogle Scholar
  23. 23.
    Hommes, F. A., Bendien, K., Elema, J. D., Bremer, H. J., & Lombeck, I. (1976). Two cases of phosphoenolpyruvate carboxykinase deficiency. Acta Paediatrica Scandinavica, 65, 233–240.PubMedGoogle Scholar
  24. 24.
    Duplus, E., Benelli, C., Reis, A. F., Fouque, F., Velho, G., & Forest, C. (2003). Expression of the phosphoenolpyruvate carboxykinase gene in human adipose tissue: induction by rosiglitazone and genetic analyses of the adipocyte-specific region of the promoter in type 2 diabetes. Biochimie, 85, 1257–1264.PubMedCrossRefGoogle Scholar
  25. 25.
    Eubank, D. W., Duplus, E., Williams, S. C, Forest, C, & Beale, E. G. (2001). Peroxisome proliferator activated receptor γ (PPARγ) and chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) negatively regulate the phosphoenolpyruvate carboxykinase promoter via a common element. The Journal of Biological Chemistry, 276, 30561–30569.PubMedCrossRefGoogle Scholar
  26. 26.
    Tordjman, J., Chauvet, G., Quette, J., Beale, E. G., Forest, C., & Antoine, B. (2003). Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. The Journal of Biological Chemistry, 278, 18785–18790.PubMedCrossRefGoogle Scholar
  27. 27.
    Bogacka, I., Xie, H., Bray, G. A., & Smith, S. R. (2004). The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care, 27, 1660–1667.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Elmus G. Beale
    • 1
    Email author
  • Brandy J. Harvey
    • 1
  • Claude Forest
    • 2
  1. 1.Department of Cell Biology & BiochemistryTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.INSERM UMR-S 747; Université Paris DescartesCentre Universitaire - U.F.R. BiomedicaleParisFrance

Personalised recommendations