Advertisement

Cell Biochemistry and Biophysics

, Volume 48, Issue 2–3, pp 177–182 | Cite as

Deleting islet autoimmunity

  • Edwin Liu
  • Marcella Li
  • Jean Jasinski
  • Masakazu Kobayashi
  • Roberto Gianani
  • Maki Nakayama
  • George S. EisenbarthEmail author
Original Paper

Abstract

Even though there are numerous autoantigens for type 1 diabetes, current evidence suggests that a single autoantigen, namely insulin, is responsible for the key initiating event in autoimmunity. If a single autoantigen is necessary for triggering the autoimmune process, then antigen-specific therapy to block or delete the immune response against that autoantigen before epitope spreading occurs, may become a larger focus of future immunotherapeutic strategies. In this article, we review current literature regarding insulin as an autoantigen and potential approaches to deleting insulin-reactive T cells through the use of peptide vaccines and targeted T cell receptor immunizations.

Keywords

Diabetes Deletional therapy B:9-23 NOD mouse BDC12-4.1 Insulin knockout 

Notes

Acknowledgments

Research supported by NIH (R01 DK32083, DK32493, DK 55969, DK 06218, DK06405); Immune Tolerance Network (AI 15416); Diabetes Endocrine Research Center (DK 057516); Autoimmunity Prevention Center (AI 50864); and Clinical Research Centers Program (M01 RR00069, M01RR00051), American Diabetes Foundation, Juvenile Diabetes Foundation, and the Children’s Diabetes Foundation.

References

  1. 1.
    Pugliese, A., Bugawan, T., Moromisato, R., Awdeh, Z. L., Alper, C. A., Jackson, R. A., Erlich, H. A., & Eisenbarth, G. S. (1994). Two subsets of HLA-DQA1 alleles mark phenotypic variation in levels of insulin autoantibodies in first degree relatives at risk for insulin-dependent diabetes. The Journal of Clinical Investigation, 93, 2447–2452.PubMedGoogle Scholar
  2. 2.
    Eisenbarth, G. S., Moriyama, H., Robles, D. T., Liu, E., Yu, L., Babu, S., Redondo, M., Gottlieb, P., Wegmann, D., & Rewers, M. (2002). Insulin autoimmunity: Prediction/precipitation/prevention type 1A diabetes. Autoimmunity Reviews, 1, 139–145.PubMedCrossRefGoogle Scholar
  3. 3.
    Thebault-Baumont, K., Dubois-LaForgue, D., Krief, P., Briand, J. P., Halbout, P., Vallon-Geoffroy, K., Morin, J., Laloux, V., Lehuen, A., Carel, J. C., Jami, J, Muller, S, & Boitard, C. (2003). Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. The Journal of Clinical Investigation, 111, 851–857.PubMedCrossRefGoogle Scholar
  4. 4.
    Moriyama, H., Abiru, N., Paronen, J., Sikora, K., Liu, E., Miao, D., Devendra, D., Beilke, J., Gianani, R., Gill, R. G., & Eisenbarth, G. S. (2003). Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the NOD mouse. Proceedings of the National Academy of Sciences of the United States of America, 100, 10376–10381.PubMedCrossRefGoogle Scholar
  5. 5.
    Baekkeskov, S., Aanstoot, H. -J., Christgau, S., Reetz, A., Solimena, M., Cascalho, M., Folli, F., Richter-Olesen, H., & De Camilli, P. (1990). Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase [published erratum appears in Nature 1990 Oct 25;347(6295):782]. Nature, 347, 151–156.PubMedCrossRefGoogle Scholar
  6. 6.
    Tisch, R, Yang, X. -D., Singer, S. M., Liblau, R. S., Fugger, L, & McDevitt, H. O. (1993). Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature, 366, 72–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Christie, M. R., Hollands, J. A., Brown, T. J., Michelsen, B. K., & Delovitch, T. L. (1993). Detection of pancreatic islet 64,000 Mr autoantigens in insulin-dependent diabetes distinct from glutamate decarboxylase. The Journal of Clinical Investigation, 22, 240–248.CrossRefGoogle Scholar
  8. 8.
    Kawasaki, E., Hutton, J. C., & Eisenbarth, G. S. (1996). Molecular cloning and characterization of the human transmembrane protein tyrosine phosphatase homologue, phogrin, an autoantigen of type 1 diabetes. Biochemical and Biophysical Reserach Communications, 227, 440–447.CrossRefGoogle Scholar
  9. 9.
    Lu, J., Li, Q., Xie, H., Chen, Z. -J., Borovitskaya, A. E., Maclaren, N. K., Notkins, A. L., & Lan, M. S. (1996). Identification of a second transmembrane protein tyrosine phosphatase, IA-2β, as an autoantigen in insulin-dependent diabetes mellitus: Precursor of the 37-kDa tryptic fragment. Proceedings of the National Academy of Sciences of the United States of America, 93, 2307–2311.PubMedCrossRefGoogle Scholar
  10. 10.
    Lieberman, S. M., Evans, A. M., Han, B., Takaki, T., Vinnitskaya, Y., Caldwell, J. A., Serreze, D. V., Shabanowitz, J., Hunt, D. F., Nathenson, S. G., Santamaria, P., & DiLorenzo, T. P. (2003). Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8384–8388.PubMedCrossRefGoogle Scholar
  11. 11.
    Birk, O. S., Douek, D. C., Elias, D., Takacs, K., Dewchand, H., Gur, S. L., Walker, M. D., van der Zee, R., Cohen, I. R., & Atlmann, D. M. (1996). A role of Hsp60 in autoimmune diabetes: Analysis in a transgenic model. Proceedings of the National Academy of Sciences of the United States of America, 93, 1032–1037.PubMedCrossRefGoogle Scholar
  12. 12.
    Deltour, L., Leduque, P., Blume, N., Madsen, O., DuBois, P., Jami, J., Bucchini, D. (1993). Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 90, 527–531.PubMedCrossRefGoogle Scholar
  13. 13.
    Heath, V. L., Moore, N. C., Parnell, S. M., & Mason, D. W. (1998). Intrathymic expression of genes involved in organ specific autoimmune disease. Journal of Autoimmunity, 11, 309–318.PubMedCrossRefGoogle Scholar
  14. 14.
    Throsby, M., Homo-Delarche, F., Chevenne, D., Goya, R., Dardenne, M., & Pleau, J. M. (1998). Pancreatic hormone expression in the murine thymus: Localization in dendritic cells and macrophages. Endocrinology, 139, 2399–2406.PubMedCrossRefGoogle Scholar
  15. 15.
    Chentoufi, A. A., & Polychronakos, C. (2002). Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: The mechanism by which the IDDM2 locus may predispose to diabetes. Diabetes, 51, 1383–1390.PubMedCrossRefGoogle Scholar
  16. 16.
    Devendra, D., Paronen, J., Liu, E., Moriyama, H., Miao, D., Yu, L., & Eisenbarth, G. S. (2004). Differential immune induction with subcutaneous versus oral administration of a diabetogenic insulin peptide in the NOD mouse. Annals of the New York Academy of Sciences¸ 1029(328–330), 328–330.PubMedCrossRefGoogle Scholar
  17. 17.
    Abiru, N., Maniatis, A. K., Yu, L., Miao, D., Moriyama, H., Wegmann, D., Eisenbarth, G. S. (2001). Peptide and MHC specific breaking of humoral tolerance to native insulin with the B:9–23 peptide in diabetes prone and normal mice. Diabetes, 50, 1274–1281.PubMedCrossRefGoogle Scholar
  18. 18.
    Wucherpfennig, K. W. (2003). MHC-Linked susceptibility to type 1 diabetes a structural perspective. Annals of the New York Academy of Sciences, 1005, 119–127.PubMedCrossRefGoogle Scholar
  19. 19.
    Wegmann, D. R., Shehadeh, N., Lafferty, K. J., Norbury-Glaser, N., Gill, R. G., & Daniel, D. (1993). Establishment of islet-specific T cell lines and clones from islet isografts placed in spontaneously diabetic NOD mice. Journal of Autoimmunity, 6, 517–527.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, E., Abiru, N., Moriyama, H., Miao, D., & Eisenbarth, G. S. (2002). Induction of insulin autoantibodies and protection from diabetes with subcutaneous insulin B:9–23 peptide without adjuvant. Annals New York Academy of Sciences, 958, 224–227.CrossRefGoogle Scholar
  21. 21.
    Haffner, S. M., D’Agostino, R., Saad, M. F., Rewers, M., Mykkanen, L., Selby, J, Howard, G., Savage, P. J., Hamman, R. F., Wagenknecht, L. E. et al. (1996). Increased insulin resistance and insulin secretion in nondiabetic African-Americans and Hispanics compared to non-Hispanic whites. The insulin resistance atherosclerosis study. Diabetes, 45, 742–748.PubMedCrossRefGoogle Scholar
  22. 22.
    Pugliese, A. (2003). Peptide-based treatment for autoimmune diseases: Learning how to handle a double-edged sword. Journal of Clinical Investigation, 111, 1280–1282.PubMedCrossRefGoogle Scholar
  23. 23.
    Moriyama, H., Wen, L., Abiru, N., Liu, E., Yu, L., Miao, D., Gianani, R., Wong, F. S., & Eisenbarth, G. S. (2002). Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proceedings of the National Academy of Sciences of the United States of America, 99, 5539–5544.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong, F. S., Karttunen, J., Dumont, C., Wen, L., Visintin, I., Pilip, I. M., Shastri, N., Pamer, E. G., & Janeway, C. A. Jr. (1999). Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Medicine, 5, 1026–1031.PubMedCrossRefGoogle Scholar
  25. 25.
    Wong, F. S., Moustakas, A. K., Wen, L., Papadopoulos, G. K., & Janeway, C. A., Jr. (2002). Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2K(d) that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 99, 5551–5556.PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez, N. R., Augstein, P., Moustakas, A. K., Papadopoulos, G. K., Gregori, S., Adorini, L., Jackson, D. C., & Harrison, L. C. (2003). Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clincal Investgation, 111, 1365–1371.CrossRefGoogle Scholar
  27. 27.
    Abiru, N., Wegmann, D., Kawasaki, E., Gottlieb, P., Simone, E., & Eisenbarth, G. S. (2000). Dual overlapping peptides recognized by insulin peptide B:9–23 reactive T cell receptor AV13S3 T cell clones of the NOD mouse. Journal of Autoimmunity, 14, 231–237.PubMedCrossRefGoogle Scholar
  28. 28.
    Alleva, D. G., Gaur, A., Jin, L., Wegmann, D., Gottlieb, P. A., Pahuja, A., Johnson, E. B., Motheral, T., Putnam, A., Crowe, P. D., Ling, N., Boehme, S. A., & Conlon, P. J. (2002). Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes, 51, 2126–2134.PubMedCrossRefGoogle Scholar
  29. 29.
    Daniel, D., Gill, R. G., Schloot, N., & Wegmann, D. (1995). Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. European Jouranl of Immunology, 25, 1056–1062.CrossRefGoogle Scholar
  30. 30.
    Simone, E., Daniel, D., Schloot, N., Gottlieb, P., Babu, S., Kawasaki, E., Wegmann, D., & Eisenbarth, G. S. (1997). T cell receptor restriction of diabetogenic autoimmune NOD T cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 2518–2521.PubMedCrossRefGoogle Scholar
  31. 31.
    Zekzer, D., Wong, F. S., Wen, L., Altieri, M., Gurlo, T., von Grafenstein, H., & Sherwin, R. S. (1997). Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes, 46, 1124–1132.PubMedCrossRefGoogle Scholar
  32. 32.
    Kubosaki, A., Miura, J., & Notkins, A. L. (2004). IA-2 is not required for the development of diabetes in NOD mice. Diabetologia, 47, 149–150.PubMedCrossRefGoogle Scholar
  33. 33.
    Kubosaki, A., Gross, S., Miura, J., Saeki, K., Zhu, M., Nakamura, S., Hendriks, W., & Notkins, A. L. (2004). Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes, 53, 1684–1691.PubMedCrossRefGoogle Scholar
  34. 34.
    Jaeckel, E., Klein, L., Martin-Orozco, N., & von Boehmer, H. (2003). Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. The Journal of Experimental Medicine, 197, 1635–1644.PubMedCrossRefGoogle Scholar
  35. 35.
    Kash, S. F., Condie, B. G., & Baekkeskov, S. (1999). Glutamate decarboxylase and GABA in pancreatic islets: Lessons from knock-out mice. Hormone and Metabolic Research, 31, 340–344.PubMedCrossRefGoogle Scholar
  36. 36.
    Nakayama, M., Abiru, N., Moriyama, H., Babaya, N., Liu, E., Miao, D., Yu, L., Wegmann, D. R., Hutton, J. C., Elliott, J. F., & Eisenbarth, G. S. (2005). Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature, 435, 220–223.PubMedCrossRefGoogle Scholar
  37. 37.
    Trudeau, J. D., Kelly-Smith, C., Verchere, C. B., Elliott, J. F., Dutz, J. P., Finegood, D. T., Santamaria, P., & Tan, R. (2003). Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. Journal of Clinical Investigation, 111, 217–223.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Edwin Liu
    • 1
  • Marcella Li
    • 1
  • Jean Jasinski
    • 1
  • Masakazu Kobayashi
    • 1
  • Roberto Gianani
    • 1
  • Maki Nakayama
    • 1
  • George S. Eisenbarth
    • 1
    Email author
  1. 1.Barbara Davis Center for Childhood Diabetes, Department of PediatricsUniversity of Colorado Health Sciences CenterAuroraUSA

Personalised recommendations