Advertisement

Cell Biochemistry and Biophysics

, Volume 48, Issue 2–3, pp 79–88 | Cite as

Role of lipids and fatty acids in macrosomic offspring of diabetic pregnancy

  • Naim Akhtar KhanEmail author
Original Paper

Abstract

Diabetic pregnancy frequently results in macrosomia or fetal obesity. It seems that the anomalies in carbohydrate and lipid metabolism in macrosomic infants of diabetic mothers are due to maternal hyperglycemia, which leads to fetal hyperinsulinemia. We have developed a rat model of macrosomic offspring and assessed the onset of obesity in these animals. The macrosomic offspring born to diabetic mothers are prone to the development of glucose intolerance and obesity as a function of age. It seems that in utero programing during diabetic pregnancy creates a “metabolic memory” which is responsible for the development of obesity in macrosomic offspring. We have demonstrated that the metabolism of lipids, and altered anti-oxidant status and immune system are implicated in the etiopathology of obesity in these animals. We have reported beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in obese animals, born to diabetic dams.

Keywords

Lipids-Fatty acids Diabetes Macrosomia Metabolic memory 

References

  1. 1.
    Merzouk, H., Bouchenak, M., Loukidi, B., Prost, J., & Belleville, J. (2000). Fetal macrosomia related to maternal poorly controlled type 1 diabetes strongly impairs serum lipoprotein concentrations and composition. Journal of Clinical Pathology, 53, 917–923.PubMedCrossRefGoogle Scholar
  2. 2.
    Meshari, A. A., De Silva, S., & Rahman, I. (1990). Fetal macrosomia-maternal risks and fetal outcome. International Journal of Gynaecology and Obstetrics, 32, 215–222.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller, J. M., Brown, H. L., Pastorek, J. G., & Gabert, H. A. (1988). Fetal overgrowth. Diabetic versus non diabetic. Journal of Ultrasound in Medicine, 7, 577–579.PubMedGoogle Scholar
  4. 4.
    Sacks, D. A., Chen, W., Greespoon, J. S., & Wolde-Tsadik, G. (1997). Should the same glucose values be targeted for type 1 as for type 2 diabetics in pregnancy? American Journal of Obstetrics and Gynecology, 177, 1113–1119.PubMedCrossRefGoogle Scholar
  5. 5.
    Adesina, O. A., & Olayemi, O. (2003). Fetal macrosomia at the university college hospital, Ibadan: a 3-year review. Journal of Obstetrics and Gynaecology, 23, 30–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Sacks, D. A. (1993). Fetal macrosomia, and gestational diabetes: What’s the problem? Obstetrics and Gynecology, 81, 775–781.PubMedGoogle Scholar
  7. 7.
    Nassar, A. H., Usta, I. M., Khalil, A. M., Melhem, Z. I., Nakad, T. I., & Abu Musa, A. A. (2003). Fetal macrosomia (≥4500 g): Perinatal outcome of 231 cases according to the mode of delivery. Journal of Perinatology, 23, 136–141.PubMedCrossRefGoogle Scholar
  8. 8.
    Conway, D. L. (2002). Delivery of the macrosomic infant: Cesarean section versus vaginal delivery. Seminars in Perinatology, 26, 225–231.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor, R., Lee, C., Kyne-Grzebalski, D., Marshall, S. M., & Davison, J. M. (2002). Clinical outcomes of pregnancy in women with type 1 diabetes. Obstetrics and Gynecology, 99, 537–541.PubMedCrossRefGoogle Scholar
  10. 10.
    Edelman, R. (1981). Obesity: Does it modulate infectious disease and immunity. Progress in Clinical and Biological Research, 67, 327–337.PubMedGoogle Scholar
  11. 11.
    Herrera, E., & Amusquivar, E. (2000). Lipid metabolism in the fetus and the newborn. Diabetes/Metabolism Research and Reviews, 16, 202–210.PubMedCrossRefGoogle Scholar
  12. 12.
    Pribylova, H., & Dvorakova, L. (1996). Long-term prognosis of infants of diabetic mothers. Relationship between metabolic disorders in newborns and adult offspring. Acta Diabetologica, 33, 30–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Merzouk, H., Madani, S., Prost, J., Loukidi, B., Meghilli-Bouchenak, M., & Belleville, J. (1999). Changes in serum lipid and lipoprotein concentrations and compositions at birth and after one month of life in macrosomic infants of insulin-dependent diabetic mothers. European Journal of Paediatrics, 158, 750–756.CrossRefGoogle Scholar
  14. 14.
    Merzouk, H., Madani, S., Chabane Sari, D., Prost, J., Bouchenak, M., & Belleville, J. (2000). The time course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of streptozotocin-induced mild diabetic rats. Clinical Science, 98, 21–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Cordero, L., & Landon, M. (1993). Infant of the diabetic mother. Clinics in Perinatology, 20, 635–648.PubMedGoogle Scholar
  16. 16.
    Plagemann, A., Harder, T., Kohlhoff, R., Rohde, W., & Dorner, G. (1997). Glucose tolerance and insulin secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia, 40, 1094–1100.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwartz, R., & Teramo, K. A. (2000). Effects of diabetic pregnancy on the fetus, and newborn. Seminars in Perinatology, 24, 120–135.PubMedCrossRefGoogle Scholar
  18. 18.
    Sameshima, H., Kamitomo, M., Kajiya, S., Kai, M., Furukawa, S., & Ikenoue, S. (2000). Early glycemic control reduces large-for-gestational-age infants in 250 Japanese gestational diabetes pregnancies. American Journal of Perinatology, 17, 371–376.PubMedCrossRefGoogle Scholar
  19. 19.
    Jimenez-Moleon, J. J., Bueno-Cavanillas, A., Luna-del-Castillo, J., Garcia-Martin, M., Lardelli-Claret, P., & Galvez-Gargas, R. (2002). Impact of different levels of carbohydrate intolerance on neonatal outcomes classically associated with gestational diabetes mellitus. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 102, 36–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Fowden, A. L. (1989). The role of insulin in prenatal growth. Journal of Developmental Physiology, 12, 173–182.PubMedGoogle Scholar
  21. 21.
    Barker, D. J. (1995). Fetal origins of coronary heart disease. British Medical Journal, 311, 171–174.PubMedGoogle Scholar
  22. 22.
    Palinski, W., & Napoli, G. (2002). The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. The FASEB Journal, 16, 1348–1360.PubMedCrossRefGoogle Scholar
  23. 23.
    Napoli, C., D’Armiento, F. P., Mancini, F. P., Witztum, J. L., Palumbo, G., & Palinski, W. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia: intimal accumulation of LDL and its oxidation precede monocyte recruitment into early atherosclerotic lesions. The Journal of Clinical Investigation, 100, 2680–2690.PubMedGoogle Scholar
  24. 24.
    Vogel, R. A., Coretti, M. C., & Plotnick, G. D. (1997). Effect of a single high-fat meal on endothelial function in healthy subjects. The American Journal of Cardiology, 79, 350–354.PubMedCrossRefGoogle Scholar
  25. 25.
    Merzouk, H., & Khan N. A. (2003). Implication of lipids in macrosomia of diabetic pregnancy: Can n-3 polyunsaturated fatty acids exert beneficial effects? Clinical Science (London), 105, 519–529.Google Scholar
  26. 26.
    Desai, M., Crowther, N., Ozanne, S. E., Lucas, A., & Hales, C. N. (1995). Adult glucose and lipid metabolism may be programmed during fetal life. Biochemical Society Transactions, 23, 331–335.PubMedGoogle Scholar
  27. 27.
    Phillips, D. I. W. (1996). Insulin resistance as a programmed response to fetal undernutrition. Diabetologia, 39, 1119–1122.PubMedGoogle Scholar
  28. 28.
    Dorner, G., & Plagemann, A. (1994). Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Hormone and Metabolic Research, 26, 213–221.PubMedGoogle Scholar
  29. 29.
    Lautala, P., Puukka, R., Knip, M., & Perkkila, L. (1988). Postnatal decrease in insulin binding to erythrocytes in infants of diabetic mothers. The Journal of Clinical Endocrinology and Metabolism, 66, 696–701.PubMedCrossRefGoogle Scholar
  30. 30.
    Foufelle, F., & Ferre, P. (2002). New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory-element-binding protein-1c. Biochemical Engineering Journal, 366, 377–391.CrossRefGoogle Scholar
  31. 31.
    Azzout-Marniche, D., Becard, D., Guichard, C., Foretz, P., & Foufelle, F. (2000). Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c). transcriptional activity in rat hepatocytes. Biochemical Engineering Journal, 350, 389–393.CrossRefGoogle Scholar
  32. 32.
    Edwards, P. A., Tabor, D., Kast, H. R., & Venkateswaran, A. (2000). Regulation of gene expression by SREBP and SCAP. Biochimica et Biophysica Acta, 1529, 103–113.PubMedGoogle Scholar
  33. 33.
    Wilentz, R. E., Witters, L. A., & Pizer, E. S. (2000). Lipogenic enzymes fatty acid synthase and acetyl-coenzyme A carboxylase are coexpressed with sterol regulatory element binding protein and Ki-67 fetal tissues. Pediatric and Developmental Pathology, 3, 525–531.PubMedCrossRefGoogle Scholar
  34. 34.
    Yura, S., Itoh, H., Sagawa, N., Yamamoto, H., Masuzaki, H., Nakao, K., Kawamura, M., Takemura, M., Kakui, K., Ogawa, Y., & Fujii S. (2005). Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metabolism, 1, 371–378.PubMedCrossRefGoogle Scholar
  35. 35.
    Merzouk, H., Madani, S., Korso, N., Bouchenak, M., Prost, J., & Belleville, J. (2000). Maternal and fetal serum lipid and lipoprotein concentrations and compositions in type 1 diabetic pregnancy: relationship with maternal glycemic control. The Journal of Laboratory and Clinical Medicine, 136, 441–448.PubMedCrossRefGoogle Scholar
  36. 36.
    Cowett, R. M., & Schartz, R. (1982). The infant of diabetic mother. Pediatric Clinics of North America, 29, 1213–1231.PubMedGoogle Scholar
  37. 37.
    Kalkhoff, R. K. (1991). Impact of maternal fuels and nutritional state on fetal growth. Diabetes, 40, 61–65.PubMedGoogle Scholar
  38. 38.
    Raivio, K. O. (1985). Carbohydrate and lipid abnormalities in infants of diabetic mothers. Clinical Pediatrics, 197, 159–162.Google Scholar
  39. 39.
    Rovamo, L. M., Taskinen, M. R., Kuusi, J., & Raivio, K. O. (1986). Postheparin plasma lipoprotein and hepatic lipase activities in hyperinsulinemic infants of diabetic mothers and in large for date infants at birth. Pediatric Research, 20, 623–626.PubMedGoogle Scholar
  40. 40.
    Knopp, R. H., Warth, M. R., Charles, D., Childs, M., Li, J. R., & Mabuchi, H. Van (1986). Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biology of the Neonate, 50, 297–317.Google Scholar
  41. 41.
    Oh, W., Gelardi, N. L., & Cha, C. J. (1988). Maternal hyperglycemia in pregnant rats: Its effects on growth and carbohydrate metabolism in the offspring. Metabolism: Clinical and Experimental, 37, 1146–1151.Google Scholar
  42. 42.
    Gelardi, N. L., Cha, C. J., & Oh, W. (1990). Glucose metabolism in adipocytes of obese offspring of mild hyperglycemic rats. Pediatric Research, 28, 641–645.PubMedCrossRefGoogle Scholar
  43. 43.
    Merzouk, H., Madani, S., Boualga, A., Prost, J., Bouchenak, M., & Belleville, J. (2001). Age-related changes in cholesterol metabolism in macrosomic offspring of rats with streptozotocin-induced diabetes. Journal of Lipid Research, 42, 1152–1159.PubMedGoogle Scholar
  44. 44.
    Merzouk, H., Madani, S., Hichami, A., Prost, J., Belleville, J., & Khan, N. A. (2002). Age-related changes in fatty-acid composition of liver and serum very-low-density lipoprotein lipids in obese offspring of streptozotocin-induced diabetes rats. Obesity Research, 10, 703–714.PubMedGoogle Scholar
  45. 45.
    Merzouk, H., Madani, S., Hichami, A., Prost, J., Moutairou, K., Belleville, J., & Khan, N. A. (2002). Impaired lipoprotein metabolism in obese offspring of streptozotocin-induced diabetic rats. Lipids, 37, 773–781.PubMedCrossRefGoogle Scholar
  46. 46.
    Gelardi, N. L., Cha, C. J., & Oh, W. (1991). Evaluation of insulin sensitivity in obese offspring of diabetic rats by hyperinsulinemic-euglycemic clamp technique. Pediatric Research, 30, 40–44.PubMedGoogle Scholar
  47. 47.
    Kissebah, A. H., Freedman, D. S., & Peiris, A. N. (1989). Health risks of obesity. The Medical Clinics of North America, 73, 111–138.PubMedGoogle Scholar
  48. 48.
    Del Prato, S., Enzi, G., Vigili de Kreutzenberg, S., Lisato, G., Riccio, A., Maifreni, L., Iori, E., Zurlo, F., Sergi, G., & Tiengo, A. (1990). Insulin regulation of glucose and lipid metabolism in massive obesity. Diabetologia, 33, 228–236.PubMedCrossRefGoogle Scholar
  49. 49.
    Verges, B. L. (1999). Dyslipidaemia in diabetes mellitus. Review of the main lipoprotein abnormalities and their consequences on the development of atherogenesis. Diabetes & Metabolism, 25(Suppl 3), 32–40.Google Scholar
  50. 50.
    Suckling, K. E., & Jackson, B. (1993). Animal models of human lipid metabolism. Progress in Lipid Research, 32, 1–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Boulange, A., Planche, E., & Gasquet, P. (1981). Onset and development of hypertriglyceridemia in the Zucker rat (fa/fa). Metabolism: Clinical and Experimental, 30, 1045–1052.Google Scholar
  52. 52.
    Bioletto, S., Golay, A., Munger, R., Kalix, B., & James, R. W. (2000). Acute hyperinsulinemia and very-low-density and low-density lipoprotein subfractions in obese subjects. The American Journal of Clinical Nutrition, 71, 443–449.PubMedGoogle Scholar
  53. 53.
    Cohn, J. S., Nestel, P. J., & Turley, S. D. (1987). Metabolism of high-density lipoprotein in the hyperlipidemic, diabetic SHR/N-corpulent rat. Metabolism, 36, 230–236.PubMedCrossRefGoogle Scholar
  54. 54.
    Mela, D. J., Cohen, R. S., & Kris-Etherton, P. M. (1987). Lipoprotein metabolism in a rat model of diet-induced adiposity. The Journal of Nutrition, 117, 1655–1662.PubMedGoogle Scholar
  55. 55.
    Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. The American Journal of Clinical Nutrition, 70, 560S-569S.PubMedGoogle Scholar
  56. 56.
    Storlien, L. H., Hulbert, A. J. & Else, P. L. (1998). Polyunsaturated fatty acids, membrane function and metabolic diseases such as diabetes and obesity. Current Opinion in Clinical Nutrition and Metabolic Care, 1, 559–563.PubMedCrossRefGoogle Scholar
  57. 57.
    Rabini, R. A., Tesei, M., Galeazzi, T., Dousset, N., Ferretti, G., & Mazzanti, L. (1999). Increased susceptibility to peroxidation of VLDL from non-insulin-dependent diabetic patients: A possible correlation with fatty acid composition. Molecular and Cellular Biochemistry, 199, 63–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, D. B., Carter, R. D., Haitas, B., & Mann, J. I. (1983). Low phospholipid arachidonic acid values in diabetic platelets. British Medical Journal, 286, 173–175.PubMedCrossRefGoogle Scholar
  59. 59.
    Yessoufou, A., Moutairou, K., Girard, A., Fatoke, M., Prost, J., Ahissou, H., Djrolo, F., Avode, G., Amoussou-Guenou, D., Hichami, A., & Khan, N. A. (2005). Antioxidant status in alcohol-related diabetes mellitus in Beninese subjects. Cellular and Molecular Biology, 51, 849–858.Google Scholar
  60. 60.
    Kamath, U., Rao, G., Raghothama, C., Rai, L., & Rao P. (1998). Erythrocyte indicators of oxidative stress in gestational diabetes. Acta Paediatrica, 87, 676–679.PubMedCrossRefGoogle Scholar
  61. 61.
    Merzouk, S., Hichami, A., Madani, S., Merzouk, H., Berrouiguet, A.Y., Prost, J., Moutairou, K., Chabane-Sari, N., & Khan, N. A. (2003). Antioxidant status and levels of different vitamins determined by high performance liquid chromatography in diabetic subjects with multiple complications. General Physiology and Biophysics, 22, 15–27.PubMedGoogle Scholar
  62. 62.
    Hunt, J. V., Smith, C. C. T., & Wolf, S. P. (1990). Autoxidative glycosylation and possible involvment of peroxides and free radicals in LDL modification by glucose. Diabetes, 39, 1420–1424.PubMedCrossRefGoogle Scholar
  63. 63.
    McLennan, S. V., Heffernan, S., Wright, L., Rae, C., Fisher, E., Yue, D. K., & Turtle, J. R. (1991). Changes in hepatic glutathione metabolism in diabetes. Diabetes, 40, 344–348.PubMedCrossRefGoogle Scholar
  64. 64.
    Young, I. S., Torney, J. J., & Trimble, E. R. (1992). The effects of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Free Radical Biology & Medicine, 8, 752–758.Google Scholar
  65. 65.
    Yessoufou, A., Soulaimann, N., Merzouk, S. A., Moutairou, K., Ahissou, H., Prost, J., Simonin, A. M., Merzouk, H., Hichami, A., & Khan, N. A. (2006). N-3 Fatty acids modulate antioxidant status in diabetic rats and their macrosomic offspring. International Journal of Obesity (Lond), 30, 739–750.CrossRefGoogle Scholar
  66. 66.
    Dincer, Y., Alademir, Z., Ilkova, H., & Akcay, T. (2002). Susceptibility of glutatione and glutathione-related antioxidant activity to hydrogen peroxide in patients with type 2 diabetes: Effect of glycemic control. Clinical Biochemistry, 35, 297–301.PubMedCrossRefGoogle Scholar
  67. 67.
    Giordano, C. (1990). Immunobiology of normal and diabetic pregnancy. Immunology Today, 11, 301–303.PubMedCrossRefGoogle Scholar
  68. 68.
    Roll, U., Scheeser, J., Standl, E., & Ziegler A. G. (1994). Alterations of lymphocytes subsets in children of diabetic mothers. Diabetologia, 37, 1132–1141.PubMedGoogle Scholar
  69. 69.
    Di Mario, U., Dotta, F., Garguilo, P., Sutherland, J., Adreani, D., Guy, K., Pachi, A., & Fallacca, F. (1987). Immunology in diabetic pregnacy: Activated T-cells in diabetic mothers and neonates. Diabetologia, 30, 66–71.PubMedGoogle Scholar
  70. 70.
    Lapolla, A., Sanzari, M. C., Znacanaro, F., Masin, M., Guerriero, A., Piva, I., Toniato, R., Erle, G., Plebani, M., & Fedele, D. (1999). Study on lymphocyte subpopulation in diabetic mothers at delivery and in their newborns. Diabetes, Nutrition & Metabolism, 12, 394–399.Google Scholar
  71. 71.
    Giordano, C., De Maria, R., Mattina, A., Stassi, G., Todaro, M., Pugliese, A., Galluzzo, G., Botta, R. M., & Galluzzo, A. (1982). Analysis of T-lymphocytte subsets after phyhemagglutinin stimulation in normal and type 1 diabetic mothers and their infants. American Journal of Reproductive Immunology, 28, 65–70.Google Scholar
  72. 72.
    El Mohandes, A., Touraine, J. L., Shurky, A. S., & Salle, B. (1982). Lymphocyte populations and reponses to mitogens in infants of diabetic mothers. Journal of Clinical & Laboratory Immunology, 8, 25–29.Google Scholar
  73. 73.
    Khan, N. A., Yessoufou, A., Minji, K., & Hichami, A. (2006). N-3 fatty acids modulate TH1 and TH2 dichotomy in diabetic pregnancy and macrosomia. Journal of Autoimmunity, 26, 268–277.PubMedCrossRefGoogle Scholar
  74. 74.
    Guermouche, B., Yessoufou, A., Soulimane, N., Merzouk, H., Moutairou, K., Hichami, A., & Khan, N. A. (2004). N-3 fatty acids modulate T-cell calcium signaling in obese macrosomic rats. Obesity Research, 12, 1744–1753.PubMedGoogle Scholar
  75. 75.
    Issemann, I., & Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347, 645–650.PubMedCrossRefGoogle Scholar
  76. 76.
    Wahli, W. (2002). Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Medical Weekly, 132, 83–91.PubMedGoogle Scholar
  77. 77.
    Braissant, O., Foufelle, F., Scotto, C., Dauca, M., & Wahli, W. (1996). Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 137, 354–366.PubMedCrossRefGoogle Scholar
  78. 78.
    Lichtenstein, A. H., Kennedy, E., Barrier, P., Danford, D., Ernst, N. D., Grundy, S. M., Leveille, G. A., Van Horn, L., Williams, C. L., & Booth, S. L. (1998). Dietary fat consumption and health. Nutrition Reviews, 56, 3–19.CrossRefGoogle Scholar
  79. 79.
    Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 40, 211–225.PubMedCrossRefGoogle Scholar
  80. 80.
    Sundram, K. (1997). Modulation of human lipids and lipoproteins by dietary palm oil and palm olein: A review. Asia Pacific Journal of Clinical Nutrition, 6, 12–16.Google Scholar
  81. 81.
    Norum, K. R. (1992). Dietary fat and blood lipids. Nutrition Reviews 50, 30–37.PubMedCrossRefGoogle Scholar
  82. 82.
    Lewis, R. A., Austen, K. F., & Soberman, R. J. (1990). Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. The New England Journal of Medicine, 323, 645–655.PubMedCrossRefGoogle Scholar
  83. 83.
    Feskens, E. J., Bowles, C. H., & Kromhout, D. (1991). Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care, 14, 935–941.PubMedCrossRefGoogle Scholar
  84. 84.
    Storlien, L. H., Kraegen, E. W., Chisholm, D. J., Ford, G. L., Bruce, D. G., & Pascoe, W. S. (1987). Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science (Washington, D.C.)., 237, 885–888.Google Scholar
  85. 85.
    Storlien, L. H., Jenkins, A. B., Chrisholm, D. J., Pascoe, W. S., Jhouri, S., & Kraegen, E. W. (1991). Influence of dietary fat composition on development of insulin resistance in rats. Diabetes, 40, 280–289.PubMedCrossRefGoogle Scholar
  86. 86.
    Lardinois, C. K., & Starich, G. H. (1991). Polyunsaturated fats enhance peripheral glucose utilization in rats. Journal of the American College of Nutrition, 10, 340–345.PubMedGoogle Scholar
  87. 87.
    Soulimane-Mokhtari, N. A., Guermouche, B., Yessoufou, A., Saker, M., Moutairou, K., Hichami, A., Merzouk, H., & Khan, N. A. (2005). Modulation of lipid metabolism by n-3 polyunsaturated fatty acids in gestational diabetic rats and their macrosomic offspring. Clinical Science (Lond)., 09, 287–95.Google Scholar
  88. 88.
    Harris, W. S., Connor, W. E., Illingworth, D. R., Rothrock, D. W., & Foster, D. M. (1990). Effects of fish oil on VLDL triglyceride kinetics in humans. Journal of Lipid Research, 31, 1549–1558.PubMedGoogle Scholar
  89. 89.
    Harris, W. S., Lu, G., Rambjor, G. S., Walen, A. I., Ontko, J. A., Cheng, Q., & Windsor, S. L. (1997). Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipases. The American Journal of Clinical Nutrition, 66, 254–260.PubMedGoogle Scholar
  90. 90.
    Demke, D. M., Peters, G. R., Linet, O. I., Metzler, C. M., & Klott, K. A. (1988). Effects of a fish oil concentrate in patients with hypercholesterolemia. Atherosclerosis, 70, 73–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Harris, W. S. (1989). Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. Journal of Lipid Research, 30, 785–807.PubMedGoogle Scholar
  92. 92.
    Sanchez-Muniz, F. J., Bastida, S., Viejo, J. M., & Terpstra, A. H. (1999). Small supplements of n-3 fatty acids change serum low density lipoprotein composition by decreasing phospholipid and apolipoprotein B concentrations in young adult women. European Journal of Clinical Nutrition, 38, 20–27.CrossRefGoogle Scholar
  93. 93.
    Wander, R. C., & Shi-Hua, Du. (2000). Oxidation of plasma proteins is not increased after supplementation with eicosapentaenoic and docosahexaenoic acids. The American Journal of Clinical Nutrition, 72, 731–737.PubMedGoogle Scholar
  94. 94.
    Allard, J. P., Kurian, R., Aghdassi, E., Muggli, R., & Royall, D. (1997). Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans. Lipids, 32, 535–541.PubMedCrossRefGoogle Scholar
  95. 95.
    Nordoy, A., Bonaa, K. H., Nilsen, H., Berge, R. K., & Hansen, J. B. (1998). Ingerbresten OC. Effects of Simvastatin and omega-3 fatty acids on plasma lipoproteins and lipid peroxidation in patients with combined hyperlipidaemia. Journal of Internal Medicine, 243, 163–170.PubMedCrossRefGoogle Scholar
  96. 96.
    Ando, K., Nagata, K., Beppu, M., Kikugawa, K., Kawabata, T., Hasegawa, K., & Suzuki, M. (1998). Effect of n-3 fatty acid supplementation on lipid peroxidation and protein aggregation in rat erythrocyte membranes. Lipids, 33, 505–512.PubMedCrossRefGoogle Scholar
  97. 97.
    Hunkar, T, Aktan, F, Ceylan, A, & Karasu, C. (2002). Antioxidants in Diabetes-Induced Complications (ADIC). Study Group. Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin-diabetic rats. Cell Biochemistry and Function, 20, 297–302.PubMedCrossRefGoogle Scholar
  98. 98.
    Gunes, A., Ceylan, A., Sarioglu, Y., Stefek, M., Bauer, V., & Karasu C. (2005). The Antioxidants in Diabetes-induced Complications (ADIC). Study Group. Reactive oxygen species mediate abnormal contractile response to sympathetic nerve stimulation and noradrenaline in the vas deferens of chronically diabetic rats: effects of in vivo treatment with antioxidants. Fundamental & Clinical Pharmacology, 19, 73–79.CrossRefGoogle Scholar
  99. 99.
    Kesavulu, M. M., Kameswararao, B., Apparao, Ch, Kumar, E. G., & Harinarayan, C. V. (2002). Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes & Metabolism, 28, 20–26.Google Scholar
  100. 100.
    Bittiner, S. B., Tucker, W. F. G., Cartwright, I., & Bleehen S. S. (1988). A Double-Blind randomised, placebo-controlled trial of fish oil in psoriasis. Lancet, 1, 378–380.PubMedCrossRefGoogle Scholar
  101. 101.
    Kremer, J. M., Jubiz, W, Michalek, A, Rynes, R. I., Bartholonew, L. E., Bigaouette, J, Timchalck, M., Beeler, D., & Lininger, L. (1987). Fish oil fatty acid supplementation in active rheumatoid Arthrisis. Annals of Internal Medicine, 106, 479–503.Google Scholar
  102. 102.
    Konttinen, Y. T., Bergroth, V., Kinnunen, E., Nordstorm, D., & Kouri, T. (1987). Activated T-lymphocytes in patients with multiple sclerosis in clinical remission. Journal of the Neurological Sciences, 81, 133–139.PubMedCrossRefGoogle Scholar
  103. 103.
    Barker, J. N. (1991). The patophysiology of psoriasis. Lancet, 338, 227–230.PubMedCrossRefGoogle Scholar
  104. 104.
    Merrill, J. E., Mohlstorm, C., Uittenbogaart, C., Kermani-Arab V, Elisson, G. W., & Myers, L. W. (1984). Reponse and production of interleukin-2 by peripheral blood and cerebrospinal fluid lymphocytes of patients with multiple sclerosis. Journal of Immunology, 133, 1931–1937.Google Scholar
  105. 105.
    Wolf, R. E., & Brelsford W.G. (1988). Soluble Interleukin-2 receptors in systemic lupus erythematosus. Arthritis and Rheumatism, 31, 729–735.PubMedCrossRefGoogle Scholar
  106. 106.
    Calder, P. C., Bevan, S. J., Hunt, S. V., & Newshlome E. A. (1991). Effect of fatty acids on the proliferation of concavaline A-stimulated rat lymphnode lymphocytes. The International Journal of Biochemistry, 23, 579–588.PubMedCrossRefGoogle Scholar
  107. 107.
    Tsang, W. M., Weyman, C., & Smith, A. D. (1977). Effect of fatty acids mixtures phyto haemmaglutinin-stimulated lymphocytes from different species. Biochemical Society Transactions, 15, 153–154.Google Scholar
  108. 108.
    Calder, P. C., Bevan S. J., & Newsholme E. A. (1992). The inhibition of T- lymphocyte proliferation by fatty acids is an eicosanoid-indepedant mechanism. Immunology, 75, 108–115.PubMedGoogle Scholar
  109. 109.
    Buttke, T. M. (1984). Inhibition of lymphocyte proliferation by free fatty acids—I. Immunology, 53, 507–514.PubMedGoogle Scholar
  110. 110.
    Soyland, E., Nenseter, M. S., Braathhen L., & Drevon, C. A. (1993). Very long chain n-3 and n-6 polyunsaturated fatty acids inhibit proliferation in human T lymphoctes in vitro. European Journal of Clinical Investigation, 23, 112–121.PubMedCrossRefGoogle Scholar
  111. 111.
    Wallace, A., Miles, E. A., Evans, C., Stock T. E., Yaqoob P., & Calder P. C. (2001). Dietary fatty acids influence the production of Th1- but not Th2-type cytokines. Journal of Leukocyte Biology, 69, 449–457.PubMedGoogle Scholar
  112. 112.
    Triboulot, C., Hichami, A., Denys, A., & Khan N. A. (2001). Dietary (n-3). polyunsaturated fatty acids exert antihypertensive effects by modulating calcium signaling in T cells of rats. The Journal of Nutrition, 131, 2364–2369.PubMedGoogle Scholar
  113. 113.
    Khan, N. A., & Hichami, A. (2002). Role of n-3 polyunsaturated fatty acids in T-cell signalling. In G. Pandalai (Ed.), Recent advances in research in lipids (Vol. 6). Transworld Publications, Trivendrum, Kerala, India, pp. 65–78.Google Scholar
  114. 114.
    Bonin, A., & Khan N. A. (2000). Regulation of calcium signalling by docosahexaenoic acid in human T-cells. Implication of CRAC channels. Journal of Lipid Research, 41, 277–284.PubMedGoogle Scholar
  115. 115.
    Aires, V., Hichami, A., Moutairou, K., & Khan, N. A. (2003). Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells. British Journal of Pharmacology, 140, 1217–1226.PubMedCrossRefGoogle Scholar
  116. 116.
    Denys, A., Hichami, A., & Khan N. A. (2001). Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. Journal of Lipid Research, 42, 2015–2020.PubMedGoogle Scholar
  117. 117.
    Denys, A., Hichami, A., & Khan N. A. (2002). Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase enzyme activity in human T-cells. Molecular and Cellular Biochemistry, 232, 143–148.PubMedCrossRefGoogle Scholar
  118. 118.
    Madani, S., Hichami, A., Legrand, A., Belleville, J., & Khan, N. A. (2001). Implication of acyl chain ofdiacylglycerols in activation of different isoforms of protein kinase C. The FASEB Journal, 15, 2595–2601.PubMedCrossRefGoogle Scholar
  119. 119.
    Hichami, A., Morin, C., Rousseau, E., & Khan, N. A. (2005). Diacylglycerol-containing docosahexaenoic acid in acyl chain modulates airway smooth muscle tone. American Journal of Respiratory Cell and Molecular Biology, 33, 378–386.PubMedCrossRefGoogle Scholar
  120. 120.
    Madani, S., Hichami, A., Charkaoui-Malki, M., & Khan, N. A. (2004). Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. The Journal of Biological Chemistry, 279, 1176–1183.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Physiology, UPRES Lipides & Signalisation CellulaireUniversité de BourgogneDijonFrance

Personalised recommendations