Advertisement

Cell Biochemistry and Biophysics

, Volume 48, Issue 2–3, pp 115–125 | Cite as

Does IGF-I stimulate pancreatic islet cell growth?

  • Jun-Li LiuEmail author
Original Paper

Abstract

Both IGF-I and its receptor (IGF-IR) are specifically expressed in various cell types of the endocrine pancreas. IGF-I has long been considered a growth factor for islet cells as it induces DNA synthesis in a glucose-dependent manner, prevents Fas-mediated autoimmune β-cell destruction and delays onset of diabetes in non-obese diabetic (NOD) mice. Islet-specific IGF-I overexpression promotes islet cell regeneration in diabetic mice. However, in the last few years, results from most gene-targeted mice have challenged this view. For instance, combined inactivation of insulin receptor and IGF-IR or IGF-I and IGF-II genes in early embryos results in no defect on islet cell development; islet β-cell-specific inactivation of IGF-IR gene causes no change in β-cell mass; liver- and pancreatic-specific IGF-I gene deficiency (LID and PID mice) suggests that IGF-I exerts an inhibitory effect on islet cell growth albeit indirectly through controlling growth hormone release or expression of Reg family genes. These results need to be evaluated with potential gene redundancy, model limitations, indirect effects and ligand-receptor cross-activations within the insulin/IGF family. Although IGF-I causes islet β-cell proliferation and neogenesis directly, what occur in normal physiology, pathophysiology or during development of an organism might be different. Locally produced and systemic IGF-I does not seem to play a positive role in islet cell growth. Rather, it is probably a negative regulator through controlling growth hormone and insulin release, hyperglycemia, or Reg gene expression. These results complicate the perspective of an IGF-I therapy for β-cell loss.

Keywords

Reg family proteins Insulin Tissue-specific gene targeting IGF-I receptor Islet β-cells Growth Secretion Apoptosis Overexpression Diabetes. 

Notes

Acknowledgments

This work was supported by a Career Development Award (2–2000–507) from the Juvenile Diabetes Research Foundation International, New York, NY, operating grants (MOP-53206, NMD-83124) from Canadian Institutes of Health Research, John R. & Clara M. Fraser Memorial fund, and the Shanghai Education Commission (China). Research contributions were made by Y. Lu, K. Roberston, Y. Guo, R. Yu, Z. Tang, and Y. Liu of McGill University.

References

  1. 1.
    Kahn, S. E. (2003). The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia, 46, 3–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell, G. I., & Polonsky, K. S. (2001). Diabetes mellitus and genetically programmed defects in beta-cell function. Nature, 414, 788–791.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard-Kargar, C., & Ktorza, A. (2001). Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes, 50, S30–S35.PubMedCrossRefGoogle Scholar
  4. 4.
    Weir, G. C., Laybutt, D. R., Kaneto, H., Bonner-Weir, S., & Sharma, A. (2001). Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes, 50, S154–S159.PubMedCrossRefGoogle Scholar
  5. 5.
    Sjoholm, A. (1996). Diabetes mellitus and impaired pancreatic beta-cell proliferation. Journal of Internal Medicine, 239, 211–220.PubMedCrossRefGoogle Scholar
  6. 6.
    George, M., Ayuso, E., Casellas, A., Costa, C., Devedjian, J. C., & Bosch, F. (2002). Beta cell expression of IGF-I leads to recovery from type 1 diabetes. Journal of Clinical Investigation 109, 1153–1163.PubMedCrossRefGoogle Scholar
  7. 7.
    Robitaille, R., Dusseault, J., Henley, N., Rosenberg, L., & Halle, J. P. (2003). Insulin-like growth factor II allows prolonged blood glucose normalization with a reduced islet cell mass transplantation. Endocrinology, 144, 3037–3045.PubMedCrossRefGoogle Scholar
  8. 8.
    Adams, G. A., Wang, X., Lee, L. K., Piercy, C. E., Alfrey, E. J., & Dafoe, D. C. (1994). Insulin-like growth factor-I promotes successful fetal pancreas transplantation in the intramuscular site. Surgery, 116, 751–755.PubMedGoogle Scholar
  9. 9.
    Desai, D. M., Adams, G. A., Wang, X., Alfrey, E. J., Sibley, R. K., & Dafoe, D. C. (1999). The influence of combined trophic factors on the success of fetal pancreas grafts. Transplantation, 68, 491–496.PubMedCrossRefGoogle Scholar
  10. 10.
    Sieradzki, J., Fleck, H., Chatterjee, A. K., & Schatz, H. (1988). Stimulatory effect of insulin-like growth factor-I on [3H]thymidine incorporation, DNA content and insulin biosynthesis and secretion of isolated pancreatic rat islets. The Journal of Endocrinology, 117, 59–62.PubMedGoogle Scholar
  11. 11.
    Hugl, S. R., White, M. F., & Rhodes, C. J. (1998). Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. The Journal of Biological Chemistry, 273, 17771–17779.PubMedCrossRefGoogle Scholar
  12. 12.
    Giannoukakis, N., Mi, Z., Rudert, W. A., Gambotto, A., Trucco, M., & Robbins, P. (2000). Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Therapy, 7, 2015–2022.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, W., Salojin, K. V., Mi, Q. S., Grattan, M., Meagher, T. C., Zucker, P., & Delovitch, T. L. (2004). Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex: Therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology, 145, 627–638.PubMedCrossRefGoogle Scholar
  14. 14.
    Movassat, J., Saulnier, C., & Portha, B. (1997). Insulin administration enhances growth of the beta-cell mass in streptozotocin-treated newborn rats. Diabetes, 46, 1445–1452.PubMedCrossRefGoogle Scholar
  15. 15.
    Kulkarni, R. N., Bruning, J. C., Winnay, J. N., Postic, C., Magnuson, M. A., & Kahn, C. R. (1999). Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell, 96, 329–339.PubMedCrossRefGoogle Scholar
  16. 16.
    Otani, K., Kulkarni, R. N., Baldwin, A. C., Krutzfeldt, J., Ueki, K., Stoffel, M., Kahn, C. R., & Polonsky, K. S. (2004). Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. American Journal of Physiology Endocrinology and Metabolism, 286, E41–E49.PubMedCrossRefGoogle Scholar
  17. 17.
    Kulkarni, R. N. (2005). New insights into the roles of insulin/IGF-I in the development and maintenance of beta-cell mass. Reviews in Endocrine & Metabolic Disorders, 6, 199–210.CrossRefGoogle Scholar
  18. 18.
    White, M. F. (2002). IRS proteins and the common path to diabetes. American Journal of Physiology Endocrinology and Metabolism, 283, E413–E422.PubMedGoogle Scholar
  19. 19.
    Dupont, J., Dunn, S. E., Barrett, J. C., & LeRoith, D. (2003). Microarray analysis and identification of novel molecules involved in insulin-like growth factor-1 receptor signaling and gene expression. Recent Progress in Hormone Research, 58, 325–342.PubMedCrossRefGoogle Scholar
  20. 20.
    Lingohr, M. K., Dickson, L. M., McCuaig, J. F., Hugl, S. R., Twardzik, D. R., & Rhodes, C. J. (2002). Activation of IRS-2–mediated signal transduction by IGF-1, but not TGF-alpha or EGF, augments pancreatic beta-cell proliferation. Diabetes, 51, 966–976.PubMedCrossRefGoogle Scholar
  21. 21.
    Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., & White, M. F. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 391, 900–904.PubMedCrossRefGoogle Scholar
  22. 22.
    Tuttle, R. L., Gill, N. S., Pugh, W., Lee, J. P., Koeberlein, B., Furth, E. E., Polonsky, K. S., Naji, A., & Birnbaum, M. J. (2001). Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nature Medicine, 7, 1133–1137.PubMedCrossRefGoogle Scholar
  23. 23.
    Kitamura, T., Nakae, J., Kitamura, Y., Kido, Y., Biggs, W. H., 3rd, Wright, C. V., White, M. F., Arden, K. C., & Accili, D. (2002). The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. Journal of Clinical Investigation, 110, 1839–1847.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakae, J., Kido, Y., & Accili, D. (2001). Distinct and overlapping functions of insulin and IGF-I receptors. Endocrine Reviews, 22, 818–835.PubMedCrossRefGoogle Scholar
  25. 25.
    LeRoith, D. (1997). Insulin-like growth factors. New England Journal of Medicine, 336, 633–640.CrossRefGoogle Scholar
  26. 26.
    Yakar, S., Liu, J. L., Stannard, B., Butler, A., Accili, D., Sauer, B., & LeRoith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 96, 7324–7329.PubMedCrossRefGoogle Scholar
  27. 27.
    Sjogren, K., Liu, J. L., Blad, K., Skrtic, S., Vidal, O., Wallenius, V., LeRoith, D., Tornell, J., Isaksson, O. G., Jansson, J. O., & Ohlsson, C. (1999). Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7088–7092.PubMedCrossRefGoogle Scholar
  28. 28.
    Clemmons, D. R. (2006). Chapter 34. Insulin-like growth factor-1 and its binding proteins. In L. J Degroot & J. L.Jameson (Eds.), Endocrinology (5th ed.). (pp. 643–673). Philadelphia, P. A: Elsevier Saunders.Google Scholar
  29. 29.
    Frasca, F., Pandini, G., Scalia, P., Sciacca, L., Mineo, R., Costantino, A., Goldfine, I. D., Belfiore, A., & Vigneri, R. (1999). Insulin receptor isoform A., a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Molecular and cellular biology, 19, 3278–3288.PubMedGoogle Scholar
  30. 30.
    Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., & Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell, 75, 59–72.PubMedGoogle Scholar
  31. 31.
    Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., Gillett, N., & Stewart, T. A. (1993). IGF-I is required for normal embryonic growth in mice. Genes & Development, 7, 2609–2617.CrossRefGoogle Scholar
  32. 32.
    Woods, K. A., Camacho-Hubner, C., Savage, M. O., & Clark, A. J. (1996). Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene [see comments]. The New England Journal of Medicine, 335, 1363–1367.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu, J., & LeRoith, D. (1999). Insulin-like growth factor-I is essential for post-natal growth in response to growth hormone. Endocrinology, 140, 5178–5184.PubMedCrossRefGoogle Scholar
  34. 34.
    D’Ercole, A. J. (1993). Expression of insulin-like growth factor-I in transgenic mice. Annals of the New York Academy of Sciences, 692, 149–160.PubMedCrossRefGoogle Scholar
  35. 35.
    Coleman, M. E., DeMayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C., & Schwartz, R. J. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. The Journal of Biological Chemistry, 270, 12109–12116.PubMedCrossRefGoogle Scholar
  36. 36.
    Reiss, K., Cheng, W., Ferber, A., Kajstura, J., Li, P., Li, B., Olivetti, G., Homcy, C. J., Baserga, R., & Anversa, P. (1996). Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 8630–8635.PubMedCrossRefGoogle Scholar
  37. 37.
    Ohneda, K., Ulshen, M. H., Fuller, C. R., D’Ercole, A. J., & Lund, P. K. (1997). Enhanced growth of small bowel in transgenic mice expressing human insulin-like growth factor I. Gastroenterology, 112, 444–454.PubMedCrossRefGoogle Scholar
  38. 38.
    Jui, H. Y., Accili, D., & Taylor, S. I. (1996). Characterization of a hybrid receptor formed by dimerization of the insulin receptor-related receptor (IRR) with the insulin receptor (IR), coexpression of cDNAs encoding human IRR and human IR in NIH-3T3 cells. Biochemistry, 35, 14326–14330.PubMedCrossRefGoogle Scholar
  39. 39.
    Hirayama, I., Tamemoto, H., Yokota, H., Kubo, S. K., Wang, J., Kuwano, H., Nagamachi, Y., Takeuchi, T., & Izumi, T. (1999). Insulin receptor-related receptor is expressed in pancreatic beta-cells and stimulates tyrosine phosphorylation of insulin receptor substrate-1 and -2. Diabetes, 48, 1237–1244.PubMedCrossRefGoogle Scholar
  40. 40.
    Ozaki, K. (1998). Insulin receptor-related receptor in rat islets of Langerhans. European Journal of Endocrinology, 139, 244–247.PubMedCrossRefGoogle Scholar
  41. 41.
    Kitamura, T., Kido, Y., Nef, S., Merenmies, J., Parada, L. F., & Accili, D (2001). Preserved pancreatic beta-cell development and function in mice lacking the insulin receptor-related receptor. Molecular and Cellular Biology, 21, 5624–5630.PubMedCrossRefGoogle Scholar
  42. 42.
    Kitamura, T., Kahn, C. R., & Accili, D. (2003). Insulin receptor knockout mice. Annual Review of Physiology, 65, 313–332.PubMedCrossRefGoogle Scholar
  43. 43.
    Fehmann, H. C., Jehle, P., Markus, U., & Goke, B. (1996). Functional active receptors for insulin-like growth factors-I (IGF-I) and IGF-II on insulin-, glucagon-, and somatostatin-producing cells. Metabolism, 45, 759–766.PubMedCrossRefGoogle Scholar
  44. 44.
    Leahy, J. L., & Vandekerkhove, K. M. (1990). Insulin-like growth factor-I at physiological concentrations is a potent inhibitor of insulin secretion. Endocrinology, 126, 1593–1598.PubMedGoogle Scholar
  45. 45.
    Furnsinn, C., Alma, M., Roden, M., Pieber, T., Nowotny, P., Schneider, B., & Waldhausl, W. (1994). Insulin-like growth factor-I inhibits insulin and amylin secretion in conscious rats. Endocrinology, 135, 2144–2149.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao, A. Z., Zhao, H., Teague, J., Fujimoto, W., & Beavo, J. A. (1997). Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proceedings of the National Academy of Sciences of the United States of America, 94, 3223–3228.PubMedCrossRefGoogle Scholar
  47. 47.
    Holst, L. S., Mulder, H., Manganiello, V., Sundler, F., Ahren, B., Holm, C., & Degerman, E. (1998). Protein kinase B is expressed in pancreatic beta cells and activated upon stimulation with insulin-like growth factor I. Biochemical and Biophysical Research Communications, 250, 181–186.PubMedCrossRefGoogle Scholar
  48. 48.
    Hill, D. J., Sedran, R. J., Brenner, S. L., & McDonald, T. J. (1997). IGF-I has a dual effect on insulin release from isolated, perifused adult rat islets of Langerhans. The Journal of Endocrinology, 153, 15–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Eizirik, D. L., Skottner, A., & Hellerstrom, C. (1995). Insulin-like growth factor I does not inhibit insulin secretion in adult human pancreatic islets in tissue culture. European Journal of Endocrinology, 133, 248–250.PubMedGoogle Scholar
  50. 50.
    Hill, D. J., Hogg, J., Petrik, J., Arany, E., & Han, VK (1999). Cellular distribution and ontogeny of insulin-like growth factors (IGFs) and IGF binding protein messenger RNAs and peptides in developing rat pancreas. The Journal of Endocrinology, 160, 305–317.PubMedCrossRefGoogle Scholar
  51. 51.
    Rabinovitch, A., Quigley, C., Russell, T., Patel, Y., & Mintz, D. H. (1982). Insulin and multiplication stimulating activity (an insulin-like growth factor) stimulate islet (beta-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes, 31, 160–164.PubMedCrossRefGoogle Scholar
  52. 52.
    Trudeau, J. D., Dutz, J. P., Arany, E., Hill, D. J., Fieldus, W. E., & Finegood, D. T. (2000). Neonatal beta-cell apoptosis: A trigger for autoimmune diabetes? Diabetes, 49, 1–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Withers, D. J., Burks, D. J., Towery, H. H., Altamuro, S. L., Flint, C. L., & White, M. F. (2000). Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nature Genetics, 23, 32–40.Google Scholar
  54. 54.
    Bergerot, I., Fabien, N., Maguer, V., & Thivolet, C. (1995). Insulin-like growth factor-1 (IGF-1) protects NOD mice from insulitis and diabetes. Clinical and Experimental Immunology, 102, 335–340.PubMedCrossRefGoogle Scholar
  55. 55.
    Harrison, M., Dunger, A. M., Berg, S., Mabley, J., John, N., Green, M. H., & Green, I. C. (1998). Growth factor protection against cytokine-induced apoptosis in neonatal rat islets of Langerhans: role of Fas. FEBS Letters, 435, 207–210.PubMedCrossRefGoogle Scholar
  56. 56.
    Hill, D. J., Petrik, J., Arany, E., McDonald, T. J., & Delovitch, T. L. (1999). Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non-obese diabetic mice. The Journal of Endocrinology, 161, 153–165.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaino, Y., Hirai, H., Ito, T., & Kida, K. (1996). Insulin-like growth factor I (IGF-I) delays the onset of diabetes in non-obese diabetic (NOD) mice. Diabetes Research and Clinical Practice, 34, 7–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Liu, W., Chin-Chance C., Lee, E-J., & Lowe, W. L., Jr. (2002). Activation of phosphatidylinositol 3-kinase contributes to insulin-like growth factor I-mediated inhibition of pancreatic {beta}-cell death. Endocrinology, 143, 3802–3812.PubMedCrossRefGoogle Scholar
  59. 59.
    Leibiger, B., Leibiger, I. B., Moede, T., Kemper, S., Kulkarni, R. N., Kahn, C. R., de Vargas, L. M., & Berggren, P. O. (2001). Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Molecular Cell, 7, 559–570.PubMedCrossRefGoogle Scholar
  60. 60.
    Leibiger, I. B., Leibiger, B., Moede, T., & Berggren, P. O. (1998). Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Molecular cell, 1, 933–938.PubMedCrossRefGoogle Scholar
  61. 61.
    Kulkarni, R. N. (2002). Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function. Biochemical Society Transactions, 30, 317–322.PubMedCrossRefGoogle Scholar
  62. 62.
    Aspinwall, C. A., Lakey, J. R., & Kennedy, R. T. (1999). Insulin-stimulated insulin secretion in single pancreatic beta cells. The Journal of Biological Chemistry, 274, 6360–6365.PubMedCrossRefGoogle Scholar
  63. 63.
    Aspinwall, C. A., Qian, W. J., Roper, M. G., Kulkarni, R. N., Kahn, C. R., & Kennedy, R. T. (2000). Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta -cells. The Journal of Biological Chemistry, 275, 22331–22338.PubMedCrossRefGoogle Scholar
  64. 64.
    Wicksteed, B., Alarcon, C., Briaud, I., Lingohr, M. K., & Rhodes, C. J. (2003). Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet beta-cells but not regulated via a positive feedback of secreted insulin. The Journal of Biological Chemistry, 278, 42080–42090.PubMedCrossRefGoogle Scholar
  65. 65.
    Khan, F. A., Goforth, P. B., Zhang, M., & Satin, L. S. (2001). Insulin activates ATP-sensitive K(+) channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway. Diabetes, 50, 2192–2198.PubMedCrossRefGoogle Scholar
  66. 66.
    Accili, D., Drago, J., Lee, E. J., Johnson, M. D., Cool, M. H., Salvatore, P., Asico, L. D., Jose, P. A., Taylor, S. I., & Westphal, H. (1996). Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genetics, 12, 106–109.PubMedCrossRefGoogle Scholar
  67. 67.
    Joshi, R. L., Lamothe, B., Cordonnier, N., Mesbah, K., Monthioux, E., Jami, J., & Bucchini, D. (1996). Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. The EMBO Journal, 15, 1542–1547.PubMedGoogle Scholar
  68. 68.
    Brown, J., Heininger, D., Kuret, J., & Mullen, Y (1981). Islet cells grow after transplantation of fetal pancreas and control of diabetes. Diabetes, 30, 9–13.PubMedGoogle Scholar
  69. 69.
    Guz, Y., Nasir, I., & Teitelman, G. (2001). Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology, 142, 4956–4968.PubMedCrossRefGoogle Scholar
  70. 70.
    Kulkarni, R. N., Winnay, J. N., Daniels, M., Bruning, J. C., Flier, S. N., Hanahan, D., & Kahn, C. R. (1999). Altered function of insulin receptor substrate-1-deficient mouse islets and cultured {beta}-cell lines. Journal of Clinical Investigation, 104, R69-R75.PubMedGoogle Scholar
  71. 71.
    Accili, D. (2001). A kinase in the life of the beta cell Journal of Clinical Investigation, 108, 1575–1576.PubMedCrossRefGoogle Scholar
  72. 72.
    Duvillie, B., Cordonnier, N., Deltour, L., Dandoy-Dron, F., Itier, J. M., Monthioux, E., Jami, J., Joshi, R. L., & Bucchini, D. (1997). Phenotypic alterations in insulin-deficient mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 94, 5137–5140.PubMedCrossRefGoogle Scholar
  73. 73.
    Duvillie, B., Currie, C., Chrones, T., Bucchini, D., Jami, J., Joshi, R. L., & Hill, D. J. (2002). Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology, 143, 1530–1537.PubMedCrossRefGoogle Scholar
  74. 74.
    Mathews, L. S., Hammer, R. E., Behringer, R. R., D’Ercole, A. J., Bell, G. I., Brinster, R. L., & Palmiter, R. D. (1988). Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 123, 2827–2833.PubMedCrossRefGoogle Scholar
  75. 75.
    Behringer, R. R., Lewin, T. M., Quaife, C. J., Palmiter, R. D., Brinster, R. L., & D’Ercole AJ .(1990) Expression of insulin-like growth factor I stimulates normal somatic growth in growth hormone-deficient transgenic mice. Endocrinology, 127, 1033–1040.PubMedCrossRefGoogle Scholar
  76. 76.
    D’Ercole, A. J. (1999). Actions of IGF system proteins from studies of transgenic and gene knockout models. In R. G.Rosenfeld & J. Roberts (Eds.), The IGF system: Molecular biology, physiology, and clinical applications (pp. 545–576) Totowa, NJ: Humana Press. .Google Scholar
  77. 77.
    Quaife, C. J., Mathews, L. S., Pinkert, C. A., Hammer, R. E., Brinster, R. L., & Palmiter, R. D. (1989). Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology, 124, 40–48.PubMedGoogle Scholar
  78. 78.
    Guo, Y., Lu, Y., Houle, D., Robertson, K., Tang, Z., Kopchick, J. J., Liu, Y. L., & Liu, JL (2005). Pancreatic islet-specific expression of an IGF-I transgene compensates islet cell growth in growth hormone receptor gene deficient mice. Endocrinology, 146, 2602–2609.PubMedCrossRefGoogle Scholar
  79. 79.
    Sun, F. L., Dean, W. L., Kelsey, G., Allen, N. D., & Reik, W. (1997). Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature, 389, 809–815.PubMedCrossRefGoogle Scholar
  80. 80.
    Petrik, J., Pell, J. M., Arany, E., McDonald, T. J., Dean, W. L., Reik, W., & Hill, D. J. (1999). Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology, 140, 2353–2363.PubMedCrossRefGoogle Scholar
  81. 81.
    Devedjian, J-C., George, M., Casellas, A., Pujol, A., Visa, J., Pelegrin, M., Gros, L., & Bosch, F. (2000). Transgenic mice overexpressing insulin-like growth factor-II in {beta} cells develop type 2 diabetes. Journal of Clinical Investigation, 105, 731–740.PubMedGoogle Scholar
  82. 82.
    Kido, Y., Nakae, J., Hribal, M. L., Xuan, S., Efstratiadis, A., & Accili, D. (2002). Effects of mutations in the insulin-like growth factor signaling system on embryonic pancreas development and beta-cell compensation to insulin resistance. Journal of Biological Chemistry, 277, 36740–36747.PubMedCrossRefGoogle Scholar
  83. 83.
    Liu, J. L., Grinberg, A., Westphal, H., Sauer, B., Accili, D., Karas, M., & LeRoith, D. (1998). Insulin-like growth factor-I affects perinatal lethality and postnatal development in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Moecular Endocrinology, 12, 1452–1462.CrossRefGoogle Scholar
  84. 84.
    Le Roith, D., Bondy, C., Yakar, S., Liu, J. L., & Butler, A .(2001) The somatomedin hypothesis: 2001. Endocrine Reviews, 22, 53–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Tang, Z., Yu, R., Lu, Y., Parlow, A. F., & Liu, JL (2005). Age-dependent onset of liver-specific IGF-I gene deficiency and its persistence in old age: implications for postnatal growth and insulin resistance in LID mice. American Journal of Physiology Endocrinology and Metabolism, 289, E288–E295.PubMedCrossRefGoogle Scholar
  86. 86.
    Yakar, S., Liu, J. L., Fernandez, A. M., Wu, Y., Schally, A. V., Frystyk, J., Chernausek, S. D., Mejia, W., & Le Roith, D. (2001). Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes, 50, 1110–1118.PubMedCrossRefGoogle Scholar
  87. 87.
    Sjogren, K., Wallenius, K., Liu, J. L., Bohlooly, Y. M., Pacini, G., Svensson, L., Tornell, J., Isaksson, O. G., Ahren, B., Jansson, J. O., & Ohlsson, C. (2001). Liver-derived IGF-I is of importance for normal carbohydrate and lipid metabolism. Diabetes, 50, 1539–1545.PubMedCrossRefGoogle Scholar
  88. 88.
    Yu, R., Yakar, S., Liu, Y. L., Lu, Y., LeRoith, D., Miao, D., & Liu, J. L. (2003). Liver-specific IGF-I gene deficient mice exhibit accelerated diabetes in response to streptozotocin, associated with early onset of insulin resistance. Molecular and Cellular Endocrinology, 204, 31–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Nielsen, J. H., Linde, S., Welinder, B. S., Billestrup, N., & Madsen, O. D. (1989). Growth hormone is a growth factor for the differentiated pancreatic beta-cell. Molecular Endocrinology, 3, 165–173.PubMedCrossRefGoogle Scholar
  90. 90.
    Liu, J-L., Coschigano, K. T., Robertson, K., Lipsett, M., Guo, Y., Kopchick, J. J., Kumar, U., & Liu, Y. L. (2004). Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. American Journal of Physiology Endocrinology and Metabolism, 287, E405–E413.PubMedCrossRefGoogle Scholar
  91. 91.
    Moses, A., Young, S., Morrow, L., O’Brien, M., & Clemmons, D. (1996) Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes, 45, 91–100.PubMedCrossRefGoogle Scholar
  92. 92.
    Smith, T. R., Elmendorf, J. S., David, T. S., & Turinsky, J (1997). Growth hormone-induced insulin resistance: role of the insulin receptor, IRS-1, GLUT-1, and GLUT-4. The American Journal of Physiology, 272, E1071–E1079.PubMedGoogle Scholar
  93. 93.
    Yakar, S., Setser, J., Zhao, H., Stannard, B., Haluzik, M., Glatt, V., Bouxsein, M. L., Kopchick, J. J., & LeRoith, D. (2004). Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. Journal of Clinical Investigation, 113, 96–105.PubMedCrossRefGoogle Scholar
  94. 94.
    Lu, Y., Herrera, P. L., Guo, Y., Sun, D., Tang, Z., LeRoith, D., & Liu, J. L. (2004). Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes, 53, 3131–3141.PubMedCrossRefGoogle Scholar
  95. 95.
    Tomita, T. (1999). Immunocytochemical localization of glucose transporter-2 (GLUT-2) in pancreatic islets and islet cell tumors. Endocrine Pathology, 10, 213–221.PubMedGoogle Scholar
  96. 96.
    Orci, L., Ravazzola, M., Baetens, D., Inman, L., Amherdt, M., Peterson, R. G., Newgard, C. B., Johnson, J. H., & Unger, R. H. (1990). Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proceedings of the National Academy of Sciences of the United States of America, 87, 9953–9957.PubMedCrossRefGoogle Scholar
  97. 97.
    Reimer, M. K., & Ahren, B. (2002). Altered beta-cell distribution of pdx-1 and GLUT-2 after a short-term challenge with a high-fat diet in C57BL/6J mice. Diabetes, 51, S138–S143.PubMedCrossRefGoogle Scholar
  98. 98.
    Lu, Y., Ponton, A., Okamoto, H., Takasawa, S., Herrera, P. L., & Liu, J. L. (2006). Activation of the Reg family genes by pancreatic-specific IGF-I gene deficiency and after streptozotocin-induced diabetes in mouse pancreas. American Journal of Physiology Endocrinology and Metabolism, 291, E50–E58. PubMedCrossRefGoogle Scholar
  99. 99.
    Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y., & Okamoto, H. (1988). A novel gene activated in regenerating islets. The Journal of Biological Chemistry, 263, 2111–2114.PubMedGoogle Scholar
  100. 100.
    Unno, M., Nata, K., Noguchi, N., Narushima, Y., Akiyama, T., Ikeda, T., Nakagawa, K., Takasawa, S., & Okamoto, H. (2002). Production and characterization of Reg knockout mice: reduced proliferation of pancreatic beta-cells in Reg knockout mice. Diabetes, 51, S478–S483.PubMedCrossRefGoogle Scholar
  101. 101.
    Rafaeloff, R., Pittenger, G. L., Barlow, S. W., Qin, X. F., Yan, B., Rosenberg, L., Duguid, W. P., & Vinik, A. I. (1997). Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters. Journal of Clinical Investigation, 99, 2100–2109.PubMedCrossRefGoogle Scholar
  102. 102.
    Rosenberg, L., Lipsett, M., Yoon, J. W., Prentki, M., Wang, R., Jun, H. S., Pittenger, G. L., Taylor-Fishwick, D., & Vinik, A. I. (2004). A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6J mice. Annals of Surgery, 240, 875–884.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang, Y. W., Ding, L. S., & Lai, M. D. (2003). Reg gene family and human diseases. World Journal of Gastroenterology, 9, 2635–2641.PubMedGoogle Scholar
  104. 104.
    Abe, M., Nata, K., Akiyama, T., Shervani, N. J., Kobayashi, S., Tomioka-Kumagai, T., Ito, S., Takasawa, S., & Okamoto, H. (2000). Identification of a novel Reg family gene, Reg IIIdelta, and mapping of all three types of Reg family gene in a 75 kilobase mouse genomic region. Gene, 246, 111–122.PubMedCrossRefGoogle Scholar
  105. 105.
    Narushima, Y., Unno, M., Nakagawara, K., Mori, M., Miyashita, H., Suzuki, Y., Noguchi, N., Takasawa, S., Kumagai, T., Yonekura, H., & Okamoto, H. (1997). Structure, chromosomal localization and expression of mouse genes encoding type III Reg, RegIII alpha, RegIII beta, RegIII gamma. Gene, 185, 159–168.PubMedCrossRefGoogle Scholar
  106. 106.
    Laurine, E., Manival, X., Montgelard, C., Bideau, C., Berge-Lefranc, J. L., Erard, M., & Verdier, J. M. (2005). PAP I. B., a new member of the Reg gene family: cloning, expression, structural properties, and evolution by gene duplication. Biochimica et Biophysica Acta, 1727, 177–187.PubMedGoogle Scholar
  107. 107.
    Xuan, S., Kitamura, T., Nakae, J., Politi, K., Kido, Y., Fisher, P. E., Morroni, M., Cinti, S., White, M. F., Herrera, P. L., Accili, D., & Efstratiadis, A. (2002). Defective insulin secretion in pancreatic beta cells lacking type 1 IGF receptor. The Journal of Clinical Investigation, 110, 1011–1019.PubMedCrossRefGoogle Scholar
  108. 108.
    Kulkarni, R. N., Holzenberger, M., Shih, D. Q., Ozcan, U., Stoffel, M., Magnuson, M. A., & Kahn, C. R. (2002). beta-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nature Genetics, 31, 111–115.PubMedGoogle Scholar
  109. 109.
    Nandi, A., Kitamura, Y., Kahn, C. R., & Accili, D .(2004) Mouse models of insulin resistance. Physiological Reviews, 84, 623–647.PubMedCrossRefGoogle Scholar
  110. 110.
    van Haeften, T. W., & Twickler, T. B. (2004). Insulin-like growth factors and pancreas beta cells. European Journal of Clinical Investigation, 34, 249–255.PubMedCrossRefGoogle Scholar
  111. 111.
    Ueki, K., Okada, T., Hu, J., Liew, C. W., Assmann, A., Dahlgren, G. M., Peters, J. L., Shackman, J. G., Zhang, M., Artner, I., Satin, L. S., Stein, R., Holzenberger, M., Kennedy, R. T., Kahn, C. R., & Kulkarni, R. N. (2006). Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nature Genetics, 38, 583–588.PubMedCrossRefGoogle Scholar
  112. 112.
    Fernandez, A. M., Kim, J. K., Yakar, S., Dupont, J., Hernandez-Sanchez, C., Castle, A. L., Filmore, J., Shulman, G. I., & Le Roith, D. (2001). Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes & Development, 15, 1926–1934.CrossRefGoogle Scholar
  113. 113.
    Herrera, P. L., Huarte, J., Sanvito, F., Meda, P., Orci, L., & Vassalli, J. D. (1991). Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development, 113, 1257–1265.PubMedGoogle Scholar
  114. 114.
    Carroll, P. V., Umpleby, M., Ward, G. S., Imuere, S., Alexander, E., Dunger, D., Sonksen, P. H., & Russell-Jones, D. L. (1997). rhIGF-I administration reduces insulin requirements, decreases growth hormone secretion, and improves the lipid profile in adults with IDDM. Diabetes, 46, 1453–1458. .PubMedCrossRefGoogle Scholar
  115. 115.
    Yang, Q., Yamagata, K., Fukui, K., Cao, Y., Nammo, T., Iwahashi, H., Wang, H., Matsumura, I., Hanafusa, T., Bucala, R., Wollheim, C. B., Miyagawa, J., & Matsuzawa, Y. (2002). Hepatocyte nuclear factor-1alpha modulates pancreatic beta-cell growth by regulating the expression of insulin-like growth factor-1 in INS-1 cells. Diabetes, 51, 1785–1792.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Fraser Laboratories for Diabetes Research, Department of MedicineMcGill University Health CentreMontrealCanada
  2. 2.Endocrine and Metabolic DivisionE-Institutes of Shanghai Universities, Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina

Personalised recommendations